Pulsars in {gamma}-ray sources Virtual Observatory Resource

Authors
  1. Lee K.J.
  2. Guillemot L.
  3. Yue Y.L.
  4. Kramer M.
  5. Champion D.J.
  6. Published by
    CDS
Abstract

Machine learning, algorithms designed to extract empirical knowledge from data, can be used to classify data, which is one of the most common tasks in observational astronomy. In this paper, we focus on Bayesian data classification algorithms using the Gaussian mixture model and show two applications in pulsar astronomy. After reviewing the Gaussian mixture model and the related expectation-maximization algorithm, we present a data classification method using the Neyman-Pearson test. To demonstrate the method, we apply the algorithm to two classification problems. First, it is applied to the well-known period-period derivative diagram. Our second example is to calculate the likelihood of unidentified Fermi point sources being pulsars.

Keywords
  1. astronomical-models
  2. pulsars
  3. photometry
  4. classification
  5. gamma-ray-astronomy
Bibliographic source Bibcode
2012MNRAS.424.2832L
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/424/2832
IVOA Identifier IVOID
ivo://CDS.VizieR/J/MNRAS/424/2832
Document Object Identifer DOI
doi:10.26093/cds/vizier.74242832

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/424/2832
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/MNRAS/424/2832
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/MNRAS/424/2832
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/MNRAS/424/2832/table3?
https://vizier.iucaa.in/viz-bin/conesearch/J/MNRAS/424/2832/table3?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/MNRAS/424/2832/table3?

History

2013-08-19T15:41:05Z
Resource record created
2013-08-19T15:41:05Z
Created
2024-07-18T20:18:56Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr