Classif. for PS1-MDS SNe with SuperRAENN Virtual Observatory Resource

Authors
  1. Villar V.A.
  2. Hosseinzadeh G.
  3. Berger E.
  4. Ntampaka M.
  5. Jones D.O.,Challis P.
  6. Chornock R.
  7. Drout M.R.
  8. Foley R.J.
  9. Kirshner R.P.
  10. Lunnan R.,Margutti R.
  11. Milisavljevic D.
  12. Sanders N.
  13. Pan Y.-C.
  14. Rest A.,Scolnic D.M.
  15. Magnier E.
  16. Metcalfe N.
  17. Wainscoat R.
  18. Waters C.
  19. Published by
    CDS
Abstract

Automated classification of supernovae (SNe) based on optical photometric light-curve information is essential in the upcoming era of wide-field time domain surveys, such as the Legacy Survey of Space and Time (LSST) conducted by the Rubin Observatory. Photometric classification can enable real-time identification of interesting events for extended multiwavelength follow-up, as well as archival population studies. Here we present the complete sample of 5243 "SN-like" light curves (in gP1rP1iP1zP1) from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). The PS1-MDS is similar to the planned LSST Wide-Fast-Deep survey in terms of cadence, filters, and depth, making this a useful training set for the community. Using this data set, we train a novel semisupervised machine learning algorithm to photometrically classify 2315 new SN-like light curves with host galaxy spectroscopic redshifts. Our algorithm consists of an RF supervised classification step and a novel unsupervised step in which we introduce a recurrent autoencoder neural network (RAENN). Our final pipeline, dubbed SuperRAENN, has an accuracy of 87% across five SN classes (Type Ia, Ibc, II, IIn, SLSN-I) and macro-averaged purity and completeness of 66% and 69%, respectively. We find the highest accuracy rates for SNe Ia and SLSNe and the lowest for SNe Ibc. Our complete spectroscopically and photometrically classified samples break down into 62.0% Type Ia (1839 objects), 19.8% Type II (553 objects), 4.8% Type IIn (136 objects), 11.7% Type Ibc (291 objects), and 1.6% Type I SLSNe (54 objects).

Keywords
  1. supernovae
  2. redshifted
  3. stellar-spectral-types
  4. photometry
  5. visible-astronomy
  6. spectroscopy
Bibliographic source Bibcode
2020ApJ...905...94V
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/905/94
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/905/94
Document Object Identifer DOI
doi:10.26093/cds/vizier.19050094

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/905/94
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/905/94
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/905/94
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/905/94/table1?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJ/905/94/table1?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJ/905/94/table1?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/905/94/table3?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJ/905/94/table3?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJ/905/94/table3?

History

2022-08-05T08:05:19Z
Resource record created
2022-08-05T08:05:19Z
Created
2022-09-05T13:42:05Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr