Molecular ISM in nearby star-forming galaxies Virtual Observatory Resource

Authors
  1. Sun J.
  2. Leroy A.K.
  3. Ostriker E.C.
  4. Hughes A.
  5. Rosolowsky E.
  6. Schruba A.,Schinnerer E.
  7. Blanc G.A.
  8. Faesi C.
  9. Kruijssen J.M.D.
  10. Meidt S.
  11. Utomo D.,Bigiel F.
  12. Bolatto A.D.
  13. Chevance M.
  14. Chiang I.-D.
  15. Dale D.
  16. Emsellem E.,Glover S.C.O.
  17. Grasha K.
  18. Henshaw J.
  19. Herrera C.N.
  20. Jimenez-Donaire M.J.,Lee J.C.
  21. Pety J.
  22. Querejeta M.
  23. Saito T.
  24. Sandstrom K.
  25. Usero A.
  26. Published by
    CDS
Abstract

We compare the observed turbulent pressure in molecular gas, P_turb_, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, P_DE_. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multiwavelength data that trace the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that P_turb_ correlates with--but almost always exceeds--the estimated P_DE_ on kiloparsec scales. This indicates that the molecular gas is overpressurized relative to the large-scale environment. We show that this overpressurization can be explained by the clumpy nature of molecular gas; a revised estimate of P_DE_ on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed P_turb_ in galaxy disks. We also find that molecular gas with cloud-scale P_turb_~P_DE_>~10^5^k_B_Kcm^-3^ in our sample is more likely to be self-gravitating, whereas gas at lower pressure it appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between P_turb_ and the observed SFR surface density, {Sigma}_SFR_, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between {Sigma}_SFR_ and kpc-scale P_DE_ in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale P_DE_ reported in previous works.

Keywords
  1. galaxies
  2. interstellar-medium
  3. molecular-physics
  4. co-line-emission
Bibliographic source Bibcode
2020ApJ...892..148S
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/892/148
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/892/148
Document Object Identifer DOI
doi:10.26093/cds/vizier.18920148

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/892/148
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/892/148
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/892/148
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/892/148/table1?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJ/892/148/table1?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJ/892/148/table1?

History

2021-09-16T12:14:30Z
Resource record created
2021-09-16T12:14:30Z
Created
2022-01-19T09:08:29Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr