We present results from a parsec-scale jet kinematics study of 409 bright radio-loud active galactic nuclei (AGNs) based on 15GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2016 December 26 as part of the 2cm VLBA survey and Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) programs. We tracked 1744 individual bright features in 382 jets over at least 5 epochs. A majority (59%) of the best-sampled jet features showed evidence of accelerated motion at the >3{sigma} level. Although most features within a jet typically have speeds within ~40% of a characteristic median value, we identified 55 features in 42 jets that had unusually slow pattern speeds, nearly all of which lie within 4pc (100pc deprojected) of the core feature. Our results, combined with other speeds from the literature, indicate a strong correlation between apparent jet speed and synchrotron peak frequency, with the highest jet speeds being found only in low-peaked AGNs. Using Monte Carlo simulations, we find best-fit parent population parameters for a complete sample of 174 quasars above 1.5Jy at 15GHz. Acceptable fits are found with a jet population that has a simple unbeamed power-law luminosity function incorporating pure luminosity evolution and a power-law Lorentz factor distribution ranging from 1.25 to 50 with slope -1.4+/-0.2. The parent jets of the brightest radio quasars have a space density of 261+/-19Gpc^-3^ and unbeamed 15GHz luminosities above ~10^24.5^W/Hz, consistent with FRII class radio galaxies.