Ensemble seismology of Gaia DR3 binary systems Virtual Observatory Resource

Authors
  1. Beck P.G.
  2. Grossmann D.H.
  3. Steinwender L.
  4. Schimak L.S.
  5. Muntean N.,Vrard M.
  6. Patton R.A.
  7. Merc J.
  8. Mathur S.
  9. Garcia R.A.
  10. Pinsonneault M.H.,Rowan D.M.
  11. Gaulme P.
  12. Allende Prieto C.
  13. Arellano-Cordova K.Z.
  14. Cao L.,Corsaro E.
  15. Creevey O.
  16. Hambleton K.M.
  17. Hanslmeier A.
  18. Holl B.
  19. Johnson J.,Mathis S.
  20. Godoy-Rivera D.
  21. Simon-Diaz S.
  22. Zinn J.C.
  23. Published by
    CDS
Abstract

Binary systems constitute a valuable astrophysics tool for testing our understanding of stellar structure and evolution. Systems contain- ing at least one oscillating component are interesting in this regard because asteroseismology offers independent parameters for the oscillating component that aid in the analysis. Systems of particular interest include those with known inclinations. With 0.8 million binary candidates, the two-body orbit catalog (TBO) of Gaia Data Release 3 (DR3) substantially increases the number of known binaries and the quality of the astrometric data available for them. To enlarge the sample of these astrophysically valuable benchmark objects, we searched for new binary system candidates identified in the Gaia DR3 TBO, for which one component has a detection of solar-like oscillations reported in the literature. We cross-matched the TBO, the full non-single star (NSS) and eclipsing binary catalogs from Gaia DR3 with catalogs of confirmed solar-like oscillators in the main-sequence and red-giant phase from the NASA Kepler mission and stars in the Southern Continuous Viewing Zone of NASA TESS. The wealth of seismic information is used to characterize the oscillating primary. To test the completeness and robustness of the values reported in the TBO catalog, we performed a similar analysis on stars of the Ninth Catalog of Spectroscopic Binary Orbits (SB9). Results. The analysis of the SB9 reveals an overall completeness factor for the Gaia TBO catalog of up to ~30% providing reliable orbital parameters for >90% of the systems P_orb-SB9_<~250d. We obtained new 954 unique binary system candidates from Gaia DR3, which host solar-like oscillators, of which we found 45 stars in binary candidates to be on the main sequence and 909 in the red giant phase. Additionally, we report 918 oscillators in potentially long-periodic systems. We present the seismic properties of the full sample and test whether the reported orbital periods are physically possible. For 146 giants, the evolutionary state has been determined from their mixed-mode period spacing, showing a clear trend to long periodic and less eccentric systems in the advanced phases of stellar evolution. Two new eclipsing binary systems, hosting a red-giant primary were found. For another 146 systems hosting oscillating stars, the values for the orbital inclination were found in the TBO. Of 181 TBO candidate systems observed multiple times with APOGEE, 149 (82%) are confirmed as binaries from radial-velocity (RV) measurement. We conclude that the grand majority of the orbital elements reported in the TBO catalog are physically reasonable and realistic. This finding increases the number included in the sample of known solar-like oscillators in binary systems by an order of magnitude. The large fraction of confirmed binaries from APOGEE RV measurements indicates that the TBO catalog is robust. We suggest that due to instrumental noise, the seismically inferred masses and radii of stars observed with the TESS satellite and with an excess of oscillation power of {nu}_max_<=30uHz could be significantly overestimated. The differences in the distributions of the orbital period and eccentricity are due to the accumulative effect of the equilibrium tide acting in these evolved binary systems.

Keywords
  1. asteroseismology
  2. orbits
Bibliographic source Bibcode
2024A&A...682A...7B
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/682/A7
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/682/A7
Document Object Identifer DOI
doi:10.26093/cds/vizier.36820007

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/682/A7
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/682/A7
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/682/A7
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/0?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/682/A7/tableb1?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/682/A7/tableb1?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/0?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/682/A7/tableb2?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/682/A7/tableb2?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/0?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/682/A7/tableb3?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/682/A7/tableb3?

History

2024-01-26T09:41:02Z
Resource record created
2024-01-26T09:41:02Z
Created
2024-11-07T20:01:25Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr