GJ 3512 radial velocity and light curves Virtual Observatory Resource

Authors
  1. Morales J.C.
  2. Mustill A.J.
  3. Ribas I.
  4. Davies M.B.
  5. Reiners A.
  6. Bauer F.F.,Kossakowski D.
  7. Herrero E.
  8. Rodriguez E.
  9. Lopez-Gonzalez M.J.,Rodriguez-Lopez C.
  10. Bejar V.J.S.
  11. Gonzalez-Cuesta L.
  12. Luque R.
  13. Palle E.,Perger M.
  14. Baroch D.
  15. Johansen A.
  16. Klahr H.
  17. Mordasini C.,Anglada-Escude G.
  18. Caballero J.A.
  19. Cortes-Contreras M.
  20. Dreizler S.,Lafarga M.
  21. Nagel E.
  22. Passegger V.M.
  23. Reffert S.
  24. Rosich A.
  25. Schweitzer A.,Tal-Or L.
  26. Trifonov T.
  27. Zechmeister M.
  28. Quirrenbach A.
  29. Amado P.J.,Guenther E.W.
  30. Hagen H.-J.
  31. Henning T.
  32. Jeffers S.V.
  33. Kaminski A.,Kurster M.
  34. Montes D.
  35. Seifert W.
  36. Abellan F.J.
  37. Abril M.
  38. Aceituno J.,Aceituno F.J.
  39. Alonso-Floriano F.J.
  40. Ammler-von Eiff M.
  41. Antona R.,Arroyo-Torres B.
  42. Azzaro M.
  43. Barrado D.
  44. Becerril-Jarque S.
  45. Benitez D.,Berdinas Z.M.
  46. Bergond G.
  47. Brinkmoller M.
  48. Del Burgo C.
  49. Burn R.,Calvo-Ortega R.
  50. Cano J.
  51. Cardenas M.C.
  52. Cardona Guillen C.
  53. Carro J.,Casal E.
  54. Casanova V.
  55. Casasayas-Barris N.
  56. Chaturvedi P.
  57. Cifuentes C.,Claret A.
  58. Colome J.
  59. Czesla S.
  60. Diez-Alonso E.
  61. Dorda R.
  62. Emsenhuber A.,Fernandez M.
  63. Fernandez-Martin A.
  64. Ferro I.M.
  65. Fuhrmeister B.,Galadi-Enriquez D.
  66. Gallardo Cava I.
  67. Garcia Vargas M.L.
  68. Garcia-Piquer A.,Gesa L.
  69. Gonzalez-Alvarez E.
  70. Gonzalez Hernandez J.I.
  71. Gonzalez-Peinado R.,Guardia J.
  72. Guijarro A.
  73. de Guindos E.
  74. Hatzes A.P.
  75. Hauschildt P.H.,Hedrosa R.P.
  76. Hermelo I.
  77. Hernandez Arabi R.
  78. Hernandez Otero F.
  79. Hintz D.,Holgado G.
  80. Huber A.
  81. Huke P.
  82. Johnson E.N.
  83. de Juan E.
  84. Kehr M.,Kemmer J.
  85. Kim M.
  86. Kluter J.
  87. Klutsch A.
  88. Labarga F.
  89. Labiche N.,Lalitha S.
  90. Lampon M.
  91. Lara L.M.
  92. Launhardt R.
  93. Lazaro F.J.
  94. Lizon J.-L.,Llamas M.
  95. Lodieu N.
  96. Lopez del Fresno M.
  97. Lopez Salas J.F.,Lopez-Santiago J.
  98. Magan Madinabeitia H.
  99. Mall U.
  100. Mancini L.
  101. Mandel H.,Marfil E.
  102. Marin Molina J.A.
  103. Martin E.L.
  104. Martin-Fernandez P.,Martin-Ruiz S.
  105. Martinez-Rodriguez H.
  106. Marvin C.J.
  107. Mirabet E.
  108. Moya A.,Naranjo V.
  109. Nelson R.P.
  110. Nortmann L.
  111. Nowak G.
  112. Ofir A.
  113. Pascual J.,Pavlov A.
  114. Pedraz S.
  115. Perez Medialdea D.
  116. Perez-Calpena A.,Perryman M.A.C.
  117. Rabaza O.
  118. Ramon Ballesta A.
  119. Rebolo R.
  120. Redondo P.,Rix H.-W.
  121. Rodler F.
  122. Rodriguez Trinidad A.
  123. Sabotta S.
  124. Sadegi S.,Salz M.
  125. Sanchez-Blanco E.
  126. Sanchez Carrasco M.A.
  127. Sanchez-Lopez A.,Sanz-Forcada J.
  128. Sarkis P.
  129. Sarmiento L.F.
  130. Schafer S.
  131. Schlecker M.,Schmitt J.H.M.M.
  132. Schofer P.
  133. Solano E.
  134. Sota A.
  135. Stahl O.
  136. Stock S.,Stuber T.
  137. Sturmer J.
  138. Suarez J.C.
  139. Tabernero H.M.
  140. Tulloch S.M.,Veredas G.
  141. Vico-Linares J.I.
  142. Vilardell F.
  143. Wagner K.
  144. Winkler J.,Wolthoff V.
  145. Yan F.
  146. Zapatero Osorio M.R.
  147. Published by
    CDS
Abstract

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.

Keywords
  1. Multiple stars
  2. Exoplanets
  3. M stars
  4. Radial velocity
  5. Photometry
Bibliographic source Bibcode
2019Sci...365.1441M
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/other/Sci/365.1441
IVOA Identifier IVOID
ivo://CDS.VizieR/J/other/Sci/365.1441

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/other/Sci/365.1441
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/other/Sci/365.1441
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/other/Sci/365.1441
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2020-03-27T09:19:41Z
Resource record created
2020-03-27T09:19:41Z
Created
2021-06-16T12:14:44Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr