Multiwavelength study of OT 081 Virtual Observatory Resource

Authors
  1. Abe H.
  2. Abe S.
  3. Acciari V.A.
  4. Agudo I.
  5. Aniello T.
  6. Ansoldi S.,Antonelli L.A.
  7. Arbet Engels A.
  8. Arcaro C.
  9. Artero M.
  10. Asano K.
  11. Baack D.,Babic A.
  12. Baquero A.
  13. Barres De Almeida U.
  14. Batkovic I.
  15. Baxter J.,Bernardini E.
  16. Bernardos M.
  17. Bernete J.
  18. Berti A.
  19. Bigongiari C.,Biland A.
  20. Blanch O.
  21. Bonnoli G.
  22. Bosnjak Z.
  23. Burelli I.
  24. Busetto G.,Campoy-Ordaz A.
  25. Carosi A.
  26. Carosi R.
  27. Carretero-castrillo M.,Castro-Tirado A.J.
  28. Chai Y.
  29. Cifuentes A.
  30. Cikota S.
  31. Colombo E.,Contreras J.L.
  32. Cortina J.
  33. Covino S.
  34. D'amico G.
  35. D'Elia V.
  36. Da Vela P.,Dazzi F.
  37. De Angelis A.
  38. De Lotto B.
  39. Del Popolo A.
  40. Delfino M.,Delgado J.
  41. Delgado Mendez C.
  42. Depaoli D.
  43. Di Pierro F.
  44. Di Venere L.,Dominis Prester D.
  45. Donini A.
  46. Dorner D.
  47. Doro M.
  48. Elsaesser D.
  49. Emery G.,Escudero J.
  50. Farina L.
  51. Fattorini A.
  52. Foffano L.
  53. Font L.
  54. Fukami S.,Fukazawa Y.
  55. Garcia Lopez R.J.
  56. Gasparyan S.
  57. Gaug M.,Giesbrecht Paiva J.G.
  58. Giglietto N.
  59. Giordano F.
  60. Gliwny P.
  61. Grau R.,Green J.G.
  62. Hadasch D.
  63. Hahn A.
  64. Heckmann L.
  65. Herrera J.
  66. Hrupec D.,Hutten M.
  67. Imazawa R.
  68. Inada T.
  69. Iotov R.
  70. Ishio K.
  71. Jimenez Martinez I.,Jormanainen J.
  72. Kerszberg D.
  73. Kluge G.W.
  74. Kobayashi Y.
  75. Kubo H.,Kushida J.
  76. Lainez Lezaun M.
  77. Lamastra A.
  78. Leone F.
  79. Lindfors E.,Linhoff L.
  80. Lombardi S.
  81. Longo F.
  82. Lopez-moya M.
  83. Lopez-Oramas A.,Loporchio S.
  84. Lorini A.
  85. Machado De Oliveira Fraga B.
  86. Majumdar P.,Makariev M.
  87. Maneva G.
  88. Mang N.
  89. Manganaro M.
  90. Mangano S.
  91. Mannheim K.,Mariotti M.
  92. Martinez M.
  93. Mas-aguilar A.
  94. Mazin D.
  95. Menchiari S.,Mender S.
  96. Micanovic S.
  97. Miceli D.
  98. Miranda J.M.
  99. Mirzoyan R.
  100. Molina E.,Mondal H.A.
  101. Morcuende D.
  102. Nanci C.
  103. Neustroev V.
  104. Nigro C.
  105. Nishijima K.,Njoh Ekoume T.
  106. Noda K.
  107. Nozaki S.
  108. Ohtani Y.
  109. Otero-santos J.
  110. Paiano S.,Palatiello M.
  111. Paneque D.
  112. Paoletti R.
  113. Paredes J.M.
  114. Pavletic L.,Persic M.
  115. Pihet M.
  116. Pirola G.
  117. Podobnik F.
  118. Prada Moroni P.G.,Prandini E.
  119. Principe G.
  120. Priyadarshi C.
  121. Rhode W.
  122. Ribo M.
  123. Rico J.,Righi C.
  124. Sahakyan N.
  125. Saito T.
  126. Satalecka K.
  127. Saturni F.G.
  128. Schleicher B.,Schmidt K.
  129. Schmuckermaier F.
  130. Schubert J.L.
  131. Schweizer T.
  132. Sitarek J.,Spolon A.
  133. Stamerra A.
  134. Striskovic J.
  135. Strom D.
  136. Suda Y.
  137. Suric T.,Suutarinen S.
  138. Tajima H.
  139. Takahashi M.
  140. Takeishi R.
  141. Tavecchio F.,Temnikov P.
  142. Terzic T.
  143. Teshima M.
  144. Tosti L.
  145. Truzzi S.
  146. Ubach S.,Van Scherpenberg J.
  147. Ventura S.
  148. Verguilov V.
  149. Viale I.
  150. Vigorito C.F.,Vitale V.
  151. Walter R.
  152. Yamamoto T. (MAGIC Collaboration)
  153. Ait Benkhali F.,Becherini Y.
  154. Bi B.
  155. Bottcher M.
  156. Bolmont J.
  157. Brown A.
  158. Bulik T.,Casanova S.
  159. Chand T.
  160. Chandra S.
  161. Chibueze J.
  162. Chibueze O.
  163. Egberts K.,Einecke S.
  164. Ernenwein J.-P.
  165. Fontaine G.
  166. Gabici S.
  167. Goswami P.
  168. Holler M.,Jamrozy M.
  169. Joshi V.
  170. Kasai E.
  171. Katarzynski K.
  172. Khatoon R.
  173. Khelifi B.,Kluzniak W.
  174. Kosack K.
  175. Lang R.G.
  176. Le Stum S.
  177. Lemiere A.
  178. Marx R.,Moderski R.
  179. Moghadam M.O.
  180. De Naurois M.
  181. Niemiec J.
  182. O'Brien P.,Ostrowski M.
  183. Peron G.
  184. Pita S.
  185. Puhlhofer G.
  186. Quirrenbach A.
  187. Rudak B.,Sahakian V.
  188. Sanchez D.A.
  189. Santangelo A.
  190. Sasaki M.
  191. Schutte H.M.,Seglar-arroyo M.
  192. Shapopi J.N.S.
  193. Steenkamp R.
  194. Steppa C.
  195. Suzuki H.,Tanaka T.
  196. Tluczykont M.
  197. Venter C.
  198. Wagner S.J.
  199. Wierzcholska A.,Zdziarski A.A.
  200. Zywucka N. (VHE Gamma-ray collaborators),Becerra Gonzalez J.
  201. Ciprini S.
  202. Venters T.M. (from the Fermi-LATCollaboration)
  203. D'Ammando F.
  204. Esteban-Gutierrez A.
  205. Fallah Ramazani V.,Filippenko A.V.
  206. Hovatta T.
  207. Jermak H.
  208. Jorstad S.
  209. Kiehlmann S.,Lahteenmaki A.
  210. Larionov V.M.
  211. Larionova E.
  212. Marscher A.P.
  213. Morozova D.,Max-Moerbeck W.
  214. Readhead A.C.S.
  215. Reeves R.
  216. Steele I.A.
  217. Tornikoski M.,Verrecchia F.
  218. Xiao H.B.
  219. Zheng W. (MWL collaborators)
  220. Published by
    CDS
Abstract

OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source, which includes very high energy (VHE, E>100GeV) {gamma}-ray data taken by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov telescopes) and H.E.S.S. (High Energy Stereoscopic System) imaging Cherenkov telescopes. The discovery of VHE {gamma}-ray emission happened during a high state of {gamma}-ray activity in July 2016, observed by many instruments from radio to VHE {gamma}-rays. We identify four states of activity of the source, one of which includes VHE {gamma}-ray emission. Variability in the VHE domain is found on daily time-scales. The intrinsic VHE spectrum can be described by a power law with index 3.27+/-0.44stat+/-0.15sys (MAGIC) and 3.39+/-0.58stat+/-0.64sys (H.E.S.S.) in the energy range of 55-300 and 120-500GeV, respectively. The broadband emission cannot be successfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the data set well and a proton-synchrotron-dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the broad-line region to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be a flat spectrum radio quasar (FSRQ), in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL Lac and FSRQ objects.

Keywords
  1. active-galactic-nuclei
  2. photometry
  3. visible-astronomy
  4. gamma-ray-astronomy
  5. radio-sources
  6. spectral-energy-distribution
Bibliographic source Bibcode
2025MNRAS.540..364A
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/540/364
IVOA Identifier IVOID
ivo://CDS.VizieR/J/MNRAS/540/364

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/540/364
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/MNRAS/540/364
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/MNRAS/540/364
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2025-06-27T15:19:57Z
Resource record created
2025-06-27T15:14:32Z
Updated
2025-06-27T15:19:57Z
Created

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr