Galaxy Zoo DR1&2, DR5 and DeepL version Virtual Observatory Resource

Authors
  1. Walmsley M.
  2. Lintott C.
  3. Geron T.
  4. Kruk S.
  5. Krawczyk C.
  6. Willett K.W.,Bamford S.
  7. Kelvin L.S.
  8. Fortson L.
  9. Gal Y.
  10. Keel W.
  11. Masters K.L.,Mehta V.
  12. Simmons B.D.
  13. Smethurst R.
  14. Smith L.
  15. Baeten E.M.
  16. Macmillan C.
  17. Published by
    CDS
Abstract

We present Galaxy Zoo DECaLS: detailed visual morphological classifications for Dark Energy Camera Legacy Survey images of galaxies within the SDSS DR8 footprint. Deeper DECaLS images (r = 23.6 versus r = 22.2 from SDSS) reveal spiral arms, weak bars, and tidal features not previously visible in SDSS imaging. To best exploit the greater depth of DECaLS images, volunteers select from a new set of answers designed to improve our sensitivity to mergers and bars. Galaxy Zoo volunteers provide 7.5 million individual classifications over 314000 galaxies. 140000 galaxies receive at least 30 classifications, sufficient to accurately measure detailed morphology like bars, and the remainder receive approximately 5. All classifications are used to train an ensemble of Bayesian convolutional neural networks (a state-of-the-art deep learning method) to predict posteriors for the detailed morphology of all 314000 galaxies. We use active learning to focus our volunteer effort on the galaxies which, if labelled, would be most informative for training our ensemble. When measured against confident volunteer classifications, the trained networks are approximately 99 per cent accurate on every question. Morphology is a fundamental feature of every galaxy; our human and machine classifications are an accurate and detailed resource for understanding how galaxies evolve.

Keywords
  1. galaxies
  2. galaxy-classification-systems
  3. astrometry
  4. redshifted
  5. photometry
  6. visible-astronomy
  7. extinction
  8. galaxy-radii
Bibliographic source Bibcode
2022MNRAS.509.3966W
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/509/3966
IVOA Identifier IVOID
ivo://CDS.VizieR/J/MNRAS/509/3966

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/509/3966
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/MNRAS/509/3966
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/MNRAS/509/3966
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/0?
https://vizier.iucaa.in/viz-bin/conesearch/J/MNRAS/509/3966/gzdv1-2?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/MNRAS/509/3966/gzdv1-2?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/0?
https://vizier.iucaa.in/viz-bin/conesearch/J/MNRAS/509/3966/gzdv5?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/MNRAS/509/3966/gzdv5?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/0?
https://vizier.iucaa.in/viz-bin/conesearch/J/MNRAS/509/3966/gzdauto?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/MNRAS/509/3966/gzdauto?

History

2024-10-14T11:08:35Z
Resource record created
2024-10-14T10:56:22Z
Updated
2024-10-14T11:08:35Z
Created

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr