Fundamental parameters of Kepler stars Virtual Observatory Resource

Authors
  1. Silva Aguirre V.
  2. Davies G.R.
  3. Basu S.
  4. Christensen-dalsgaard J.,Creevey O.
  5. Metcalfe T.S.
  6. Bedding T.R.
  7. Casagrande L.
  8. Handberg R.,Lund M.N.
  9. Nissen P.E.
  10. Chaplin W.J.
  11. Huber D.
  12. Serenelli A.M.
  13. Stello D.,Van Eylen V.
  14. Campante T.L.
  15. Elsworth Y.
  16. Gilliland R.L.
  17. Hekker S.,Karoff C.
  18. Kawaler S.D.
  19. Kjeldsen H.
  20. Lundkvist M.S.
  21. Published by
    CDS
Abstract

We present a study of 33 Kepler planet-candidate host stars for which asteroseismic observations have sufficiently high signal-to-noise ratio to allow extraction of individual pulsation frequencies. We implement a new Bayesian scheme that is flexible in its input to process individual oscillation frequencies, combinations of them, and average asteroseismic parameters, and derive robust fundamental properties for these targets. Applying this scheme to grids of evolutionary models yields stellar properties with median statistical uncertainties of 1.2 per cent (radius), 1.7 per cent (density), 3.3 per cent (mass), 4.4 per cent (distance), and 14 per cent (age), making this the exoplanet host-star sample with the most precise and uniformly determined fundamental parameters to date. We assess the systematics from changes in the solar abundances and mixing-length parameter, showing that they are smaller than the statistical errors. We also determine the stellar properties with three other fitting algorithms and explore the systematics arising from using different evolution and pulsation codes, resulting in 1 per cent in density and radius, and 2 per cent and 7 per cent in mass and age, respectively. We confirm previous findings of the initial helium abundance being a source of systematics comparable to our statistical uncertainties, and discuss future prospects for constraining this parameter by combining asteroseismology and data from space missions. Finally, we compare our derived properties with those obtained using the global average asteroseismic observables along with effective temperature and metallicity, finding excellent level of agreement. Owing to selection effects, our results show that the majority of the high signal-to-noise ratio asteroseismic Kepler host stars are older than the Sun.

Keywords
  1. multiple-stars
  2. solar-system-planets
  3. stellar-masses
Bibliographic source Bibcode
2015MNRAS.452.2127S
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/452/2127
IVOA Identifier IVOID
ivo://CDS.VizieR/J/MNRAS/452/2127

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/452/2127
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/MNRAS/452/2127
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/MNRAS/452/2127
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/MNRAS/452/2127/table3?
https://vizier.iucaa.in/viz-bin/conesearch/J/MNRAS/452/2127/table3?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/MNRAS/452/2127/table3?

History

2016-04-20T15:12:28Z
Resource record created
2016-04-20T15:12:28Z
Created
2017-10-12T13:00:05Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr