LAMOST DR7 stellar param. from RRNet model Virtual Observatory Resource

Authors
  1. Xiong S.
  2. Li X.
  3. Liao C.
  4. Published by
    CDS
Abstract

This work proposes a residual recurrent neural network (RRNet) for synthetically extracting spectral information and estimating stellar atmospheric parameters together with 15 chemical element abundances for medium-resolution spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). The RRNet consists of two fundamental modules: a residual module and a recurrent module. The residual module extracts spectral features based on the longitudinally driving power from parameters, while the recurrent module recovers spectral information and restrains the negative influences from noises based on Cross-band Belief Enhancement. RRNet is trained by the spectra from common stars between LAMOST DR7 and the APOGEE-Payne catalog. The 17 stellar parameters and their uncertainties for 2.37 million medium-resolution spectra from LAMOST DR7 are predicted. For spectra with a signal-to-noise ratio >=10, the precision of estimations (Teff and logg) are 88K and 0.13dex, respectively, elements C, Mg, Al, Si, Ca, Fe, and Ni are 0.05-0.08dex, and N, O, S, K, Ti, Cr, and Mn are 0.09-0.14dex, while that of Cu is 0.19dex. Compared with StarNet and SPCANet, RRNet shows higher accuracy and robustness. In comparison to Apache Point Observatory Galactic Evolution Experiment and Galactic Archaeology with HERMES surveys, RRNet manifests good consistency within a reasonable range of bias.

Keywords
  1. astronomical-models
  2. visible-astronomy
  3. spectroscopy
  4. chemical-abundances
Bibliographic source Bibcode
2022ApJS..261...36X
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJS/261/36
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJS/261/36
Document Object Identifer DOI
doi:10.26093/cds/vizier.22610036

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJS/261/36
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJS/261/36
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJS/261/36
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJS/261/36/rrnetcat?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJS/261/36/rrnetcat?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJS/261/36/rrnetcat?

History

2022-11-07T14:45:16Z
Resource record created
2022-11-07T14:45:16Z
Created
2022-11-15T07:26:26Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr