Opt. & UV cat. of Abell 1882 galaxy members Virtual Observatory Resource

Authors
  1. Sengupta A.
  2. Keel W.C.
  3. Morrison G.
  4. Windhorst R.A.
  5. Miller N.
  6. Smith B.
  7. Published by
    CDS
Abstract

A rare opportunity to distinguish between internal and environmental effects on galaxy evolution is afforded by "SuperGroups," systems that are rich and massive, but include several comparably rich substructures, surrounded by filaments. We present here a multiwavelength photometric and spectroscopic study of the galaxy population in the SuperGroup Abell 1882 (A1882) at z=0.139, combining new data from the MMT and Hectospec with archival results from the Galaxy And Mass Assembly survey, the Sloan Digital Sky Survey, the Nasa/IPAC Extragalactic Database, the Gemini Multi-Object Spectrograph, and the Galaxy Evolution Explorer. These provide spectroscopic classifications for 526 member galaxies, across wide ranges of local density and velocity dispersion. We identify three prominent filaments along which galaxies seem to be entering the SuperGroup (mostly in E-W directions). A1882 has a well-populated red sequence, containing most galaxies with stellar mass >10^10.5^M_{sun}_, and a pronounced color-density relation even within its substructures. Thus, galaxy evolution responds to the external environment as strongly in these unrelaxed systems as we find in rich and relaxed clusters. From these data, local density remains the primary factor, with a secondary role for distance from the inferred center of the entire structure's potential well. The effects on star formation, as traced by optical and near-UV colors, depend on galaxy mass. We see changes in lower-mass galaxies (M<10^10.5^M_{sun}_) at four times the virial radius of major substructures, while the more massive near-UV Green Valley galaxies show low levels of star formation within two virial radii. The suppression of star formation ("quenching") occurs in the infall regions of these structures even before the galaxies enter the denser group environment.

Keywords
  1. galaxy-clusters
  2. galaxies
  3. spectroscopy
  4. redshifted
  5. visible-astronomy
  6. line-intensities
  7. ultraviolet-photometry
  8. two-color-diagrams
Bibliographic source Bibcode
2022ApJS..258...32S
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJS/258/32
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJS/258/32
Document Object Identifer DOI
doi:10.26093/cds/vizier.22580032

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJS/258/32
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJS/258/32
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJS/258/32
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJS/258/32/members?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJS/258/32/members?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJS/258/32/members?

History

2022-06-13T08:06:07Z
Resource record created
2022-06-13T08:06:07Z
Created
2023-11-13T08:02:40Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr