A detailed analysis of the rotational spectra of the interstellar iso-propyl cyanide has been carried out up to 480GHz using three different high-resolution spectroscopic techniques. Jet-cooled broadband chirped pulse Fourier transform microwave spectroscopy from 6 to 18GHz allowed us to measure and analyze the ground-state rotational transitions of all singly substituted ^13^C and ^15^N isotopic species in their natural abundances. The monohydrate of iso-propyl cyanide, in which the water molecule bounds through a stronger O-H...N and weaker bifurcated (C-H)_2_...O hydrogen bonds in a C_s_ configuration, has also been detected in the supersonic expansion. Stark-modulation spectroscopy in the microwave and millimeter wave range from 18 to 75GHz allowed us to analyze the vibrational satellite pattern arising from pure rotational transitions in the low-lying vibrational excited states. Finally, assignments and measurements were extended through the millimeter and submillimeter wave region. The room temperature rotational spectra made possible the assignment and analysis of pure rotational transitions in 19 vibrationally excited states. Significant perturbations were found above 100GHz in most of the observed excited states. Due to the complexity of the interactions and importance of this astrophysical region for future radioastronomical detection, both a graphical plot approach and a coupled fit have been used to assign and measure almost 10000 new lines.