Classification of 2000 bright IRAS sources Virtual Observatory Resource

Authors
  1. Gupta R.
  2. Singh H.P.
  3. Volk K.
  4. Kwok S.
  5. Published by
    CDS
Abstract

An artificial neural network (ANN) scheme has been employed that uses a supervised back-propagation algorithm to classify 2000 bright sources from the Calgary database of Infrared Astronomical Satellite (IRAS) spectra in the region 8-23{mu}m. The database has been classified into 17 predefined classes based on the spectral morphology. We have been able to classify over 80% of the sources correctly in the first instance. The speed and robustness of the scheme will allow us to classify the whole of the Low Resolution Spectrometer database, containing more than 50,000 sources, in the near future.

Keywords
  1. infrared-sources
  2. infrared-astronomy
  3. spectroscopy
Bibliographic source Bibcode
2004ApJS..152..201G
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJS/152/201
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJS/152/201
Document Object Identifer DOI
doi:10.26093/cds/vizier.21520201

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJS/152/201
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJS/152/201
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJS/152/201
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJS/152/201/table3?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJS/152/201/table3?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJS/152/201/table3?

History

2005-08-31T22:22:18Z
Resource record created
2005-08-31T22:22:18Z
Created
2017-09-22T16:16:27Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr