Obs. of two transits of GJ 3470b with NEID Virtual Observatory Resource

Authors
  1. Stefansson G.
  2. Mahadevan S.
  3. Petrovich C.
  4. Winn J.N.
  5. Kanodia S.,Millholland S.C.
  6. Maney M.
  7. Canas C.I.
  8. Wisniewski J.
  9. Robertson P.,Ninan J.P.
  10. Ford E.B.
  11. Bender C.F.
  12. Blake C.H.
  13. Cegla H.
  14. Cochran W.D.,Diddams S.A.
  15. Dong J.
  16. Endl M.
  17. Fredrick C.
  18. Halverson S.
  19. Hearty F.,Hebb L.
  20. Hirano T.
  21. Lin A.S.J.
  22. Logsdon S.E.
  23. Lubar E.
  24. McElwain M.W.,Metcalf A.J.
  25. Monson A.
  26. Rajagopal J.
  27. Ramsey L.W.
  28. Roy A.
  29. Schwab C.,Schweiker H.
  30. Terrien R.C.
  31. Wright J.T.
  32. Published by
    CDS
Abstract

The warm Neptune GJ 3470b transits a nearby (d=29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5m Telescope at Kitt Peak Observatory, we model the classical Rossiter-McLaughlin effect, yielding a sky-projected obliquity of {lambda}=98_-12_^+15^{deg} and a vsini=0.85_-0.33_^+0.27^km/s. Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of {psi}=95_-8_^+9^{deg}, revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of \dot{gamma}=-0.0022+/-0.0011m/s/d over a baseline of 12.9yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b's mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ~1.5-1.7, which could help account for its evaporating atmosphere.

Keywords
  1. exoplanets
  2. visible-astronomy
  3. spectroscopy
  4. radial-velocity
  5. photometry
Bibliographic source Bibcode
2022ApJ...931L..15S
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/931/L15
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/931/L15

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/931/L15
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/931/L15
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/931/L15
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2025-03-26T15:26:22Z
Resource record created
2025-03-26T15:26:22Z
Created
2025-04-01T12:52:45Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr