Chromospheric activity of {rho} CrB and 88 Leo Virtual Observatory Resource

Authors
  1. Metcalfe T.S.
  2. van Saders J.L.
  3. Basu S.
  4. Buzasi D.
  5. Drake J.J.,Egeland R.
  6. Huber D.
  7. Saar S.H.
  8. Stassun K.G.
  9. Ball W.H.
  10. Campante T.L.,Finley A.J.
  11. Kochukhov O.
  12. Mathur S.
  13. Reinhold T.
  14. See V.
  15. Baliunas S.,Soon W.
  16. Published by
    CDS
Abstract

During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle age, while stellar activity continues to decline. We aim to characterize this midlife transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and {rho} CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star ({rho} CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of {rho} CrB is consistent with the expected evolution of its mean activity level and that weakened braking models can more readily explain its relatively fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this midlife transition in solar-type stars.

Keywords
  1. Asteroseismology
  2. G stars
  3. Stellar radii
  4. Stellar masses
  5. Stellar ages
  6. Optical astronomy
  7. X-ray sources
Bibliographic source Bibcode
2021ApJ...921..122M
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/921/122
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/921/122
Document Object Identifer DOI
doi:10.26093/cds/vizier.19210122

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/921/122
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/921/122
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/921/122
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/921/122/table2?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJ/921/122/table2?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJ/921/122/table2?

History

2023-03-30T08:24:38Z
Resource record created
2023-03-30T08:24:38Z
Created
2023-06-15T09:21:24Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr