Neutrinos in coincidence with GWs from LIGO/Virgo Virtual Observatory Resource

Authors
  1. Abe K.
  2. Bronner C.
  3. Hayato Y.
  4. Ikeda M.
  5. Imaizumi S.
  6. Kameda J.,Kanemura Y.
  7. Kataoka Y.
  8. Miki S.
  9. Miura M.
  10. Moriyama S.
  11. Nagao Y.,Nakahata M.
  12. Nakayama S.
  13. Okada T.
  14. Okamoto K.
  15. Orii A.
  16. Pronost G.,Sekiya H.
  17. Shiozawa M.
  18. Sonoda Y.
  19. Suzuki Y.
  20. Takeda A.
  21. Takemoto Y.,Takenaka A.
  22. Tanaka H.
  23. Watanabe S.
  24. Yano T.
  25. Han S.
  26. Kajita T.,Okumura K.
  27. Tashiro T.
  28. Wang R.
  29. Xia J.
  30. Megias G.D.
  31. Bravo-Berguno D.,Labarga L.
  32. Marti L.
  33. Zaldivar B.
  34. Pointon B.W.
  35. Blaszczyk F.D.M.,Kearns E.
  36. Raaf J.L.
  37. Stone J.L.
  38. Wan L.
  39. Wester T.
  40. Bian J.,Griskevich N.J.
  41. Kropp W.R.
  42. Locke S.
  43. Mine S.
  44. Smy M.B.
  45. Sobel H.W.,Takhistov V.
  46. Weatherly P.
  47. Hill J.
  48. Kim J.Y.
  49. Lim I.T.
  50. Park R.G.,Bodur B.
  51. Scholberg K.
  52. Walter C.W.
  53. Bernard L.
  54. Coffani A.
  55. Drapier O.,El Hedri S.
  56. Giampaolo A.
  57. Gonin M.
  58. Mueller T.A.
  59. Paganini P.
  60. Quilain B.,Ishizuka T.
  61. Nakamura T.
  62. Jang J.S.
  63. Learned J.G.
  64. Anthony L.H.V.,Martin D.G.R.
  65. Sztuc A.A.
  66. Uchida Y.
  67. Berardi V.
  68. Catanesi M.G.,Radicioni E.
  69. Calabria N.F.
  70. Machado L.N.
  71. De Rosa G.
  72. Collazuol G.,Iacob F.
  73. Lamoureux M.
  74. Ospina N.
  75. Ludovici L.
  76. Maekawa Y.
  77. Nishimura Y.,Cao S.
  78. Friend M.
  79. Hasegawa T.
  80. Ishida T.
  81. Jakkapu M.
  82. Kobayashi T.,Matsubara T.
  83. Nakadaira T.
  84. Nakamura K.
  85. Oyama Y.
  86. Sakashita K.,Sekiguchi T.
  87. Tsukamoto T.
  88. Kotsar Y.
  89. Nakano Y.
  90. Ozaki H.
  91. Shiozawa T.,Suzuki A.T.
  92. Takeuchi Y.
  93. Yamamoto S.
  94. Ali A.
  95. Ashida Y.
  96. Feng J.,Hirota S.
  97. Kikawa T.
  98. Mori M.
  99. Nakaya T.
  100. Wendell R.A.
  101. Yasutome K.,Fernandez P.
  102. Mccauley N.
  103. Mehta P.
  104. Pritchard A.
  105. Tsui K.M.
  106. Fukuda Y.,Itow Y.
  107. Menjo H.
  108. Niwa T.
  109. Sato K.
  110. Tsukada M.
  111. Mijakowski P.
  112. Jiang J.,Jung C.K.
  113. Vilela C.
  114. Wilking M.J.
  115. Yanagisawa C.
  116. Hagiwara K.
  117. Harada M.,Horai T.
  118. Ishino H.
  119. Ito S.
  120. Koshio Y.
  121. Kitagawa H.
  122. Ma W.
  123. Piplani N.,Sakai S.
  124. Kuno Y.
  125. Barr G.
  126. Barrow D.
  127. Cook L.
  128. Goldsack A.
  129. Samani S.,Simpson C.
  130. Wark D.
  131. Nova F.
  132. Boschi T.
  133. Di Lodovico F.
  134. Migenda J.,Molina Sedgwick S.
  135. Taani M.
  136. Zsoldos S.
  137. Yang J.Y.
  138. Jenkins S.J.,Malek M.
  139. Mcelwee J.M.
  140. Stone O.
  141. Thiesse M.D.
  142. Thompson L.F.
  143. Okazawa H.,Kim S.B.
  144. Yu I.
  145. Nishijima K.
  146. Koshiba M.
  147. Iwamoto K.
  148. Nakajima Y.,Ogawa N.
  149. Yokoyama M.
  150. Martens K.
  151. Vagins M.R.
  152. Izumiyama S.
  153. Kuze M.,Tanaka M.
  154. Yoshida T.
  155. Inomoto M.
  156. Ishitsuka M.
  157. Ito H.
  158. Matsumoto R.,Ohta K.
  159. Shinoki M.
  160. Martin J.F.
  161. Tanaka H.A.
  162. Towstego T.
  163. Akutsu R.,Hartz M.
  164. Konaka A.
  165. De Perio P.
  166. Prouse N.W.
  167. Chen S.
  168. Xu B.D.,Posiadala-Zezula M.
  169. Hadley D.
  170. Richards B.
  171. Jamieson B.
  172. Walker J.,Minamino A.
  173. Okamoto K.
  174. Pintaudi G.
  175. Sano S.
  176. Sasaki R.
  177. Ichikawa A.K.,Nakamura K.
  178. The Super-Kamiokande Collaboration
  179. Published by
    CDS
Abstract

The Super-Kamiokande detector can be used to search for neutrinos in time coincidence with gravitational waves detected by the LIGO-Virgo Collaboration (LVC). Both low-energy (7-100MeV) and high-energy (0.1-105GeV) samples were analyzed in order to cover a very wide neutrino spectrum. Follow-ups of 36 (out of 39) gravitational waves reported in the GWTC-2 catalog were examined; no significant excess above the background was observed, with 10 (24) observed neutrinos compared with 4.8 (25.0) expected events in the high-energy (low- energy) samples. A statistical approach was used to compute the significance of potential coincidences. For each observation, p-values were estimated using neutrino direction and LVC sky map; the most significant event (GW190602_175927) is associated with a post-trial p-value of 7.8% (1.4{sigma}). Additionally, flux limits were computed independently for each sample and by combining the samples. The energy emitted as neutrinos by the identified gravitational wave sources was constrained, both for given flavors and for all flavors assuming equipartition between the different flavors, independently for each trigger and by combining sources of the same nature.

Keywords
  1. gravitational-waves
  2. neutron-stars
  3. black-holes
  4. neutrino-astronomy
Bibliographic source Bibcode
2021ApJ...918...78A
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/918/78
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/918/78
Document Object Identifer DOI
doi:10.26093/cds/vizier.19180078

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/918/78
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/918/78
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/918/78
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/918/78/table2?
https://vizier.iucaa.in/viz-bin/conesearch/J/ApJ/918/78/table2?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/ApJ/918/78/table2?

History

2023-04-04T11:04:12Z
Resource record created
2023-04-04T11:04:12Z
Created
2023-07-03T14:32:00Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr