Space telescope RM project. VIII. NGC5548 HST sp. Virtual Observatory Resource

Authors
  1. Kriss G.A.
  2. De Rosa G.
  3. Ely J.
  4. Peterson B.M.
  5. Kaastra J.
  6. Mehdipour M.,Ferland G.J.
  7. Dehghanian M.
  8. Mathur S.
  9. Edelson R.
  10. Korista K.T.
  11. Arav N.,Barth A.J.
  12. Bentz M.C.
  13. Brandt W.N.
  14. Crenshaw D.M.
  15. Dalla Bonta E.,Denney K.D.
  16. Done C.
  17. Eracleous M.
  18. Fausnaugh M.M.
  19. Gardner E.
  20. Goad M.R.,Grier C.J.
  21. Horne K.
  22. Kochanek C.S.
  23. McHardy I.M.
  24. Netzer H.
  25. Pancoast A.,Pei L.
  26. Pogge R.W.
  27. Proga D.
  28. Silva C.
  29. Tejos N.
  30. Vestergaard M.,Adams S.M.
  31. Anderson M.D.
  32. Arevalo P.
  33. Beatty T.G.
  34. Behar E.
  35. Bennert V.N.,Bianchi S.
  36. Bigley A.
  37. Bisogni S.
  38. Boissay-Malaquin R.
  39. Borman G.A.,Bottorff M.C.
  40. Breeveld A.A.
  41. Brotherton M.
  42. Brown J.E.
  43. Brown J.S.,Cackett E.M.
  44. Canalizo G.
  45. Cappi M.
  46. Carini M.T.
  47. Clubb K.I.,Comerford J.M.
  48. Coker C.T.
  49. Corsini E.M.
  50. Costantini E.
  51. Croft S.,Croxall K.V.
  52. Deason A.J.
  53. De Lorenzo-Caceres A.
  54. De Marco B.
  55. Dietrich M.,Di Gesu L.
  56. Ebrero J.
  57. Evans P.A.
  58. Filippenko A.V.
  59. Flatland K.
  60. Gates E.L.,Gehrels N.
  61. Geier S.
  62. Gelbord J.M.
  63. Gonzalez L.
  64. Gorjian V.
  65. Grupe D.,Gupta A.
  66. Hall P.B.
  67. Henderson C.B.
  68. Hicks S.
  69. Holmbeck E.
  70. Holoien T.W.-S.,Hutchison T.A.
  71. Im M.
  72. Jensen J.J.
  73. Johnson C.A.
  74. Joner M.D.
  75. Kaspi S.,Kelly B.C.
  76. Kelly P.L.
  77. Kennea J.A.
  78. Kim M.
  79. Kim S.C.
  80. Kim S.Y.
  81. King A.,Klimanov S.A.
  82. Krongold Y.
  83. Lau M.W.
  84. Lee J.C.
  85. Leonard D.C.
  86. Li M.,Lira P.
  87. Lochhaas C.
  88. Ma Z.
  89. MacInnis F.
  90. Malkan M.A.
  91. Manne-Nicholas E.R.,Matt G.
  92. Mauerhan J.C.
  93. McGurk R.
  94. Montuori C.
  95. Morelli L.
  96. Mosquera A.,Mudd D.
  97. Muller-Sanchez F.
  98. Nazarov S.V.
  99. Norris R.P.
  100. Nousek J.A.,Nguyen M.L.
  101. Ochner P.
  102. Okhmat D.N.
  103. Paltani S.
  104. Parks J.R.
  105. Pinto C.,Pizzella A.
  106. Poleski R.
  107. Ponti G.
  108. Pott J.-U.
  109. Rafter S.E.
  110. Rix H.-W.,Runnoe J.
  111. Saylor D.A.
  112. Schimoia J.S.
  113. Schnulle K.
  114. Scott B.
  115. Sergeev S.G.,Shappee B.J.
  116. Shivvers I.
  117. Siegel M.
  118. Simonian G.V.
  119. Siviero A.,Skielboe A.
  120. Somers G.
  121. Spencer M.
  122. Starkey D.
  123. Stevens D.J.
  124. Sung H.-I.,Tayar J.
  125. Teems K.G.
  126. Treu T.
  127. Turner C.S.
  128. Uttley P.
  129. Van Saders J..,Vican L.
  130. Villforth C.
  131. Villanueva S. Jr
  132. Walton D.J.
  133. Waters T.
  134. Weiss Y.,Woo J.-H.
  135. Yan H.
  136. Yuk H.
  137. Zheng W.
  138. Zhu W.
  139. Zu Y.
  140. Published by
    CDS
Abstract

We model the ultraviolet spectra of the Seyfert 1 galaxy NGC 5548 obtained with the Hubble Space Telescope during the 6 month reverberation mapping campaign in 2014. Our model of the emission from NGC 5548 corrects for overlying absorption and deblends the individual emission lines. Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles of Ly{alpha} and CIV, and the narrow and broad intrinsic absorption features. We find that the time lags for the corrected emission lines are comparable to those for the original data. The velocity-binned lag profiles of Ly{alpha} and CIV have a double-peaked structure indicative of a truncated Keplerian disk. The narrow absorption lines show a delayed response to continuum variations corresponding to recombination in gas with a density of ~10^5^cm^-3^. The high-ionization narrow absorption lines decorrelate from continuum variations during the same period as the broad emission lines. Analyzing the response of these absorption lines during this period shows that the ionizing flux is diminished in strength relative to the far-ultraviolet continuum. The broad absorption lines associated with the X-ray obscurer decrease in strength during this same time interval. The appearance of X-ray obscuration in ~2012 corresponds with an increase in the luminosity of NGC 5548 following an extended low state. We suggest that the obscurer is a disk wind triggered by the brightening of NGC 5548 following the decrease in size of the broad-line region during the preceding low-luminosity state.

Keywords
  1. seyfert-galaxies
  2. spectroscopy
  3. ultraviolet-astronomy
  4. line-intensities
Bibliographic source Bibcode
2019ApJ...881..153K
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/881/153
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/881/153
Document Object Identifer DOI
doi:10.26093/cds/vizier.18810153

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/881/153
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/881/153
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/881/153
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2021-02-11T09:04:18Z
Resource record created
2021-02-11T09:04:18Z
Created
2021-04-27T11:29:04Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr