Dwarf carbon (dC) stars (main-sequence stars showing carbon molecular bands) were initially thought to be an oxymoron because only asymptotic giant branch (AGB) stars dredge carbon into their atmospheres. Mass transfer from a former AGB companion that has since faded to a white dwarf seems the most likely explanation. Indeed, a few types of giants known to show anomalous abundances- notably, the CH, Ba and CEMP-s stars-are known to have a high binary frequency. The dC stars may be the enhanced-abundance progenitors of most, if not all of these systems, but this requires demonstrating a high binary frequency for dCs. Here, for a sample of 240 dC stars targeted for repeat spectroscopy by the SDSS-IV's Time Domain Spectroscopic Survey, we analyze radial velocity (RV) variability to constrain the binary frequency and orbital properties. A handful of dC systems show large velocity variability (>100km/s). We compare the dCs to a control sample with a similar distribution of magnitude, color, proper motion, and parallax. Using Markov chain Monte Carlo methods, we use the measured {Delta}RV distribution to estimate the binary fraction and the separation distribution assuming both a unimodal and bimodal distribution. We find the dC stars have an enhanced binary fraction of 95%, consistent with them being products of mass transfer. These models result in mean separations of less than 1 au corresponding to periods on the order of 1 yr. Our results support the conclusion that dC stars form from close binary systems via mass transfer.