UV to NIR light curves of type Ia SN 2017erp Virtual Observatory Resource

Authors
  1. Brown P.J.
  2. Hosseinzadeh G.
  3. Jha S.W.
  4. Sand D.
  5. Vieira E.
  6. Wang X.
  7. Dai M.,Dettman K.G.
  8. Mould J.
  9. Uddin S.
  10. Wang L.
  11. Arcavi I.
  12. Bento J.
  13. Burns C.R.,Diamond T.
  14. Hiramatsu D.
  15. Howell D.A.
  16. Hsiao E.Y.
  17. Marion G.H.
  18. Mccully C.,Milne P.A.
  19. Mirzaqulov D.
  20. Ruiter A.J.
  21. Valenti S.
  22. Xiang D.
  23. Published by
    CDS
Abstract

We present space-based ultraviolet/optical photometry and spectroscopy with the Swift Ultra-Violet/Optical Telescope and Hubble Space Telescope (HST), respectively, along with ground-based optical photometry and spectroscopy and near-infrared spectroscopy of supernova SN 2017erp. The optical light curves and spectra are consistent with a normal SN Ia. Compared to previous photometric samples in the near-ultraviolet (NUV), SN 2017erp has UV colors that are redder than NUV-blue SNe Ia corrected to similar optical colors. The chromatic difference between SNe 2011fe and 2017erp is dominated by the intrinsic differences in the UV rather than the expected dust reddening. This chromatic difference is similar to the SALT2 color law, derived from rest-frame ultraviolet photometry of higher redshift SNe Ia. Differentiating between intrinsic UV diversity and dust reddening can have important consequences for determining cosmological distances with rest-frame ultraviolet photometry. This ultraviolet spectroscopic series is the first from HST of a normal, albeit reddened, NUV-red SN Ia and is important for analyzing SNe Ia with intrinsically redder NUV colors. We show model comparisons suggesting that metallicity could be the physical difference between NUV-blue and NUV-red SNe Ia, with emission peaks from reverse fluorescence near 3000{AA} implying a factor of ~10 higher metallicity in the upper layers of SN 2017erp compared to SN 2011fe. Metallicity estimates are very model dependent, however, and there are multiple effects in the UV. Further models and UV spectra of SNe Ia are needed to explore the diversity of SNe Ia, which show seemingly independent differences in the near-UV peaks and mid-UV flux levels.

Keywords
  1. Supernovae
  2. Ultraviolet photometry
  3. Infrared photometry
  4. Optical astronomy
  5. Wide-band photometry
Bibliographic source Bibcode
2019ApJ...877..152B
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/877/152
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/877/152
Document Object Identifer DOI
doi:10.26093/cds/vizier.18770152

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/877/152
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/877/152
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/877/152
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2020-12-18T08:07:59Z
Resource record created
2020-12-18T08:07:59Z
Created
2021-03-29T09:08:16Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr