K2 light curve alternative analysis of ASASSN-18bt Virtual Observatory Resource

Authors
  1. Shappee B.J.
  2. Holoien T.W.-S.
  3. Drout M.R.
  4. Auchettl K.
  5. Stritzinger M.D.,Kochanek C.S.
  6. Stanek K.Z.
  7. Shaya E.
  8. Narayan G. (The ASAS-SN)
  9. Brown J.S.,Bose S.
  10. Bersier D.
  11. Brimacombe J.
  12. Chen P.
  13. Dong S.
  14. Holmbo S.
  15. Katz B.,Munoz J.A.
  16. Mutel R.L.
  17. Post R.S.
  18. Prieto J.L.
  19. Shields J.
  20. Tallon D.,Thompson T.A.
  21. Vallely P.J.
  22. Villanueva S. (The ATLAS)
  23. Denneau L.,Flewelling H.
  24. Heinze A.N.
  25. Smith K.W.
  26. Stalder B.
  27. Tonry J.L.
  28. Weiland H.,Barclay T.
  29. Barentsen G.
  30. Cody A.M.
  31. Dotson J.
  32. Foerster F.
  33. Garnavich P.,Gully-Santiago M.
  34. Hedges C.
  35. Howell S.
  36. Kasen D.
  37. Margheim S.
  38. Mushotzky R.,Rest A.
  39. Tucker B.E.
  40. Villar A.
  41. Zenteno A. (The Kepler Spacecraft Team),Beerman G.
  42. Bjella R.
  43. Castillo G.
  44. Coughlin J.
  45. Elsaesser B.
  46. Flynn S.,Gangopadhyay R.
  47. Griest K.
  48. Hanley M.
  49. Kampmeier J.
  50. Kloetzel R.
  51. Kohnert L.,Labonde C.
  52. Larsen R.
  53. Larson K.A.
  54. McCalmont-Everton K.M.
  55. McGinn C.,Migliorini L.
  56. Moffatt J.
  57. Muszynski M.
  58. Nystrom V.
  59. Osborne D.
  60. Packard M.,Peterson C.A.
  61. Redick M.
  62. Reedy L.H.
  63. Ross S.E.
  64. Spencer B.
  65. Steward K.,Van Cleve J.E.
  66. Vinicius de Miranda Cardoso J.
  67. Weschler T.,Wheaton A. (The Pan-STARRS)
  68. Bulger J.
  69. Chambers K.C.
  70. Flewelling H.A.,Huber M.E.
  71. Lowe T.B.
  72. Magnier E.A.
  73. Schultz A.S.B.
  74. Waters C.Z.
  75. Willman M.,Baron E.
  76. Chen Z.
  77. Derkacy J.M.
  78. Huang F.
  79. Li L.
  80. Li W.
  81. Li X.
  82. Mo J.,Rui L.
  83. Sai H.
  84. Wang L.
  85. Wang L.
  86. Wang X.
  87. Xiang D.
  88. Zhang J.
  89. Zhang J.,Zhang K.
  90. Zhang T.
  91. Zhang X.
  92. Zhao X.
  93. Brown P.J.
  94. Hermes J.J.
  95. Nordin J.,Points S.
  96. Sodor A.
  97. Strampelli G.M.
  98. Zenteno A.
  99. Published by
    CDS
Abstract

On 2018 February 4.41, the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered ASASSN-18bt in the K2 Campaign 16 field. With a redshift of z=0.01098 and a peak apparent magnitude of B_max_=14.31, ASASSN-18bt is the nearest and brightest Supernovae Ia type (SNe Ia) yet observed by the Kepler spacecraft. Here we present the discovery of ASASSN-18bt, the K2 light curve, and prediscovery data from ASAS-SN and the Asteroid Terrestrial-impact Last Alert System. The K2 early-time light curve has an unprecedented 30-minute cadence and photometric precision for an SN Ia light curve, and it unambiguously shows a ~4 day nearly linear phase followed by a steeper rise. Thus, ASASSN-18bt joins a growing list of SNe Ia whose early light curves are not well described by a single power law. We show that a double-power-law model fits the data reasonably well, hinting that two physical processes must be responsible for the observed rise. However, we find that current models of the interaction with a nondegenerate companion predict an abrupt rise and cannot adequately explain the initial, slower linear phase. Instead, we find that existing published models with shallow ^56^Ni are able to span the observed behavior and, with tuning, may be able to reproduce the ASASSN-18bt light curve. Regardless, more theoretical work is needed to satisfactorily model this and other early-time SNe Ia light curves. Finally, we use Swift X-ray nondetections to constrain the presence of circumstellar material (CSM) at much larger distances and lower densities than possible with the optical light curve. For a constant-density CSM, these nondetections constrain {rho}<4.5x10^5^cm^-3^ at a radius of 4x10^15^cm from the progenitor star. Assuming a wind-like environment, we place mass loss limits of dM/dt<8x10^-6^M{sun}/yr for {nu}_w_=100km/s, ruling out some symbiotic progenitor systems. This work highlights the power of well-sampled early-time data and the need for immediate multiband, high-cadence follow-up for progress in understanding SNe Ia.

Keywords
  1. photometry
  2. visible-astronomy
  3. supernovae
Bibliographic source Bibcode
2019ApJ...870...13S
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/870/13
IVOA Identifier IVOID
ivo://CDS.VizieR/J/ApJ/870/13
Document Object Identifer DOI
doi:10.26093/cds/vizier.18700013

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/870/13
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/ApJ/870/13
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/ApJ/870/13
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2020-07-24T13:52:39Z
Resource record created
2020-07-24T13:52:39Z
Created
2020-10-07T12:50:35Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr