Predicted transit times of Kepler-51b, c, and d Virtual Observatory Resource

Authors
  1. Masuda K.
  2. Libby-Roberts J.E.
  3. Livingston J.H.
  4. Stevenson K.B.
  5. Gao P.,Vissapragada S.
  6. Fu G.
  7. Han Te
  8. Greklek-McKeon M.
  9. Mahadevan S.
  10. Agol E.,Bello-Arufe A.
  11. Berta-Thompson Z.
  12. Canas C.I.
  13. Chachan Y.
  14. Hebb L.
  15. Hu R.,Kawashima Y.
  16. Knutson H.A.
  17. Morley C.V.
  18. Murray C.A.
  19. Ohno K.,Tokadjian A.
  20. Zhang Xi
  21. Welbanks L.
  22. Nixon M.C.
  23. Freedman R.
  24. Narita N.,Fukui A.
  25. de Leon J.P.
  26. Mori M.
  27. Palle E.
  28. Murgas F.
  29. Parviainen H.,Esparza-Borges E.
  30. Jontof-Hutter D.
  31. Collins K.A.
  32. Benni P.
  33. Barkaoui K.,Pozuelos F.J.
  34. Gillon M.
  35. Jehin E.
  36. Benkhaldoun Z.
  37. Hawley S.
  38. Lin A.S.J.,Stefansson G.
  39. Bieryla A.
  40. Yilmaz M.
  41. Senavci H.V.
  42. Girardin E.,Marino G.
  43. Wang G.
  44. Published by
    CDS
Abstract

Kepler-51 is a <=1Gyr old Sun-like star hosting three transiting planets with radii ~6-9R_{Earth}_ and orbital periods ~45-130days. Transit timing variations (TTVs) measured with past Kepler and Hubble Space Telescope (HST) observations have been successfully modeled by considering gravitational interactions between the three transiting planets, yielding low masses and low mean densities (<=0.1g/cm^3^) for all three planets. However, the transit time of the outermost transiting planet Kepler-51d recently measured by the James Webb Space Telescope 10yr after the Kepler observations is significantly discrepant from the prediction made by the three-planet TTV model, which we confirmed with ground-based and follow-up HST observations. We show that the departure from the three-planet model is explained by including a fourth outer planet, Kepler-51e, in the TTV model. A wide range of masses (<=M_Jup_) and orbital periods (<=10yr) are possible for Kepler-51e. Nevertheless, all the coplanar solutions found from our brute-force search imply masses <=10M_{Earth}_ for the inner transiting planets. Thus, their densities remain low, though with larger uncertainties than previously estimated. Unlike other possible solutions, the one in which Kepler-51e is around the 2:1 mean motion resonance with Kepler-51d implies low orbital eccentricities (<=0.05) and comparable masses (~5M_{Earth}_) for all four planets, as is seen in other compact multiplanet systems. This work demonstrates the importance of long-term follow-up of TTV systems for probing longer-period planets in a system.

Keywords
  1. exoplanets
  2. infrared-photometry
  3. visible-astronomy
Bibliographic source Bibcode
2024AJ....168..294M
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/168/294
IVOA Identifier IVOID
ivo://CDS.VizieR/J/AJ/168/294

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/AJ/168/294
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/AJ/168/294
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/AJ/168/294
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2025-09-18T12:55:27Z
Resource record created
2025-09-18T12:55:27Z
Created
2025-09-18T14:43:18Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr