Spitzer variability detections of 79 brown dwarfs Virtual Observatory Resource

Authors
  1. Vos J.M.
  2. Biller B.A.
  3. Allers K.N.
  4. Faherty J.K.
  5. Liu M.C.
  6. Metchev S.,Eriksson S.
  7. Manjavacas E.
  8. Dupuy T.J.
  9. Janson M.
  10. Radigan-Hoffman J.,Crossfield I.
  11. Bonnefoy M.
  12. Best W.M.J.
  13. Homeier D.
  14. Schlieder J.E.,Brandner W.
  15. Henning T.
  16. Bonavita M.
  17. Buenzli E.
  18. Published by
    CDS
Abstract

We present Spitzer Space Telescope variability monitoring observations of three low-gravity L dwarfs with previous detections of variability in the near-IR: 2MASSJ0045+16, 2MASSJ0501-00, and 2MASSJ1425-36. We detect significant periodic variability in two of our targets, 2MASS J0045+16 and 2MASS J0501-00. We do not detect variability in 2MASS J1425-36. Combining our new rotation periods with rotational velocities, we calculate inclination angles of 22{deg}{+/-}1{deg}, 60_-8_^+13^{deg}, and 52_-13_^+19^{deg} for 2MASSJ0045+16, 2MASSJ0501-00, and 2MASSJ1425-36, respectively. Our three new objects are consistent with the tentative relations between inclination, amplitude, and color anomaly previously reported. Objects with the highest variability amplitudes are inclined equator on, while the maximum observed amplitude decreases as the inclination angle decreases. We also find a correlation between the inclination angle and (J-K)_2MASS_ color anomaly for the sample of objects with measured inclinations. Compiling the entire sample of brown dwarfs with Spitzer variability detections, we find no enhancement in amplitude for young, early-L dwarfs compared to the field dwarf population. We find a possible enhancement in amplitude of low-gravity late-L dwarfs at 4.5{mu}m. We do not find a correlation between amplitude ratio and spectral type for field dwarfs or for the young population. Finally, we compile the rotation periods of a large sample of brown dwarfs with ages 1Myr-1Gyr and compare the rotation rates predicted by evolutionary models assuming angular momentum conservation. We find that the rotation rates of the current sample of brown dwarfs fall within the expected range set by evolutionary models and breakup limits.

Keywords
  1. Brown dwarfs
  2. Infrared photometry
  3. Stellar spectral types
  4. Stellar ages
  5. Stellar radii
Bibliographic source Bibcode
2020AJ....160...38V
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/160/38
IVOA Identifier IVOID
ivo://CDS.VizieR/J/AJ/160/38
Document Object Identifer DOI
doi:10.26093/cds/vizier.51600038

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/AJ/160/38
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/AJ/160/38
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/AJ/160/38
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/AJ/160/38/table3?
https://vizier.iucaa.in/viz-bin/conesearch/J/AJ/160/38/table3?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/AJ/160/38/table3?

History

2020-11-02T13:56:25Z
Resource record created
2020-11-02T13:56:25Z
Created
2022-07-04T07:43:10Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr