Clusters of galaxies are outstanding laboratories for understanding the physics of supermassive black hole (SMBH) feedback. Here we present the first Chandra, Karl G. Jansky Very Large Array, and Hubble Space Telescope analysis of MACS J1447.4+0827 (z=0.3755), one of the strongest cool core clusters known, in which extreme feedback from its central SMBH is needed to prevent the hot intracluster gas from cooling. Using this multiwavelength approach, including 70ks of Chandra X-ray observations, we detect the presence of collimated jetted outflows that coincide with a southern and a northern X-ray cavity. The total mechanical power associated with these outflows (P_cav_~6x1044erg/s) is roughly consistent with the energy required to prevent catastrophic cooling of the hot intracluster gas (L_cool_=1.71{+/-}0.01x1045erg/s for t_cool_=7.7Gyr), implying that powerful SMBH feedback was in place several Gyr ago in MACS J1447.7+0827. In addition, we detect the presence of a radio minihalo that extends over 300kpc in diameter (P1.4GHz=3.0{+/-}0.3x1024W/Hz). The X-ray observations also reveal an ~20kpc plumelike structure that coincides with optical dusty filaments that surround the central galaxy. Overall, this study demonstrates that the various physical phenomena occurring in the most nearby clusters of galaxies are also occurring in their more distant analogs.