8695 flares from 1228 stars in TESS sectors 1 & 2 Virtual Observatory Resource

Authors
  1. Gunther M.N.
  2. Zhan Z.
  3. Seager S.
  4. Rimmer P.B.
  5. Ranjan S.
  6. Stassun K.G.,Oelkers R.J.
  7. Daylan T.
  8. Newton E.
  9. Kristiansen M.H.
  10. Olah K.
  11. Gillen E.,Rappaport S.
  12. Ricker G.R.
  13. Vanderspek R.K.
  14. Latham D.W.
  15. Winn J.N.,Jenkins J.M.
  16. Glidden A.
  17. Fausnaugh M.
  18. Levine A.M.
  19. Dittmann J.A.,Quinn S.N.
  20. Krishnamurthy A.
  21. Ting E.B.
  22. Published by
    CDS
Abstract

We perform a study of stellar flares for the 24809 stars observed with 2 minute cadence during the first two months of the Transiting Exoplanet Survey Satellite (TESS) mission. Flares may erode exoplanets' atmospheres and impact their habitability, but might also trigger the genesis of life around small stars. TESS provides a new sample of bright dwarf stars in our galactic neighborhood, collecting data for thousands of M dwarfs that might host habitable exoplanets. Here, we use an automated search for flares accompanied by visual inspection. Then, our public allesfitter code robustly selects the appropriate model for potentially complex flares via Bayesian evidence. We identify 1228 flaring stars, 673 of which are M dwarfs. Among 8695 flares in total, the largest superflare increased the stellar brightness by a factor of 16.1. Bolometric flare energies range from 10^31.0^ to 10^36.9^erg, with a median of 10^33.1^erg. Furthermore, we study the flare rate and energy as a function of stellar type and rotation period. We solidify past findings that fast rotating M dwarfs are the most likely to flare and that their flare amplitude is independent of the rotation period. Finally, we link our results to criteria for prebiotic chemistry, atmospheric loss through coronal mass ejections, and ozone sterilization. Four of our flaring M dwarfs host exoplanet candidates alerted on by TESS, for which we discuss how these effects can impact life. With upcoming TESS data releases, our flare analysis can be expanded to almost all bright small stars, aiding in defining criteria for exoplanet habitability.

Keywords
  1. stellar-flares
  2. m-stars
  3. visible-astronomy
  4. surveys
  5. effective-temperature
  6. stellar-radii
  7. stellar-spectral-types
Bibliographic source Bibcode
2020AJ....159...60G
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/159/60
IVOA Identifier IVOID
ivo://CDS.VizieR/J/AJ/159/60
Document Object Identifer DOI
doi:10.26093/cds/vizier.51590060

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/AJ/159/60
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/AJ/159/60
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/AJ/159/60
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/AJ/159/60/table2?
https://vizier.iucaa.in/viz-bin/conesearch/J/AJ/159/60/table2?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/AJ/159/60/table2?

History

2020-04-22T15:34:24Z
Resource record created
2020-04-22T15:34:24Z
Created
2021-07-01T13:14:41Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr