We report the discovery of four close-in transiting exoplanets (HATS-50b through HATS-53b), discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V=12.5-14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal-rich ([Fe/H]=0.2-0.3), larger, and more massive. Three of the new exoplanets, namely HATS-50b, HATS-51b, and HATS-53b, have low density (HATS-50b: 0.39+/-0.10 M_J_, 1.130+/-0.075 R_J_; HATS-51b: 0.768+/-0.045 M_J_, 1.41+/-0.19 R_J_; HATS-53b: 0.595+/-0.089 M_J_, 1.340+/-0.056 R_J_) and similar orbital periods (3.8297 days, 3.3489 days, 3.8538 days, respectively). Instead, HATS-52b is more dense (mass 2.24+/-0.15 M_J_ and radius 1.382+/-0.086 R_J_) and has a shorter orbital period (1.3667 days). It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature (T_eq_=1834+/-73 K). HATS-50 shows a marginal additional transit feature consistent with an ultra-short-period hot super Neptune (upper mass limit 0.16 M_J_), which will be able to be confirmed with TESS photometry.