Shape models and spin states of Jupiter Trojans Virtual Observatory Resource

Authors
  1. Hanus J.
  2. Vokrouhlicky D.
  3. Nesvorny D.
  4. Durech J.
  5. Stephens R.
  6. Benishek V.,Oey J.
  7. Pokorny P.
  8. Published by
    CDS
Abstract

The leading theory for the origin of Jupiter Trojans (JTs) assumes that JTs were captured to their orbits near the Lagrangian points of Jupiter during the early reconfiguration of the giant planets. The natural source region for the majority of JTs would then be the population of planetesimals born in a massive trans-Neptunian disk. If true, JTs represent the most accessible stable population of small Solar System bodies that formed in the outer regions of the Solar System. For this work, we compiled photometric datasets for about 1000 JTs and applied the convex inversion technique in order to assess their shapes and spin states. We obtained full solutions for 79 JTs, and partial solutions for an additional 31 JTs. We found that the observed distribution of the pole obliquities of JTs is broadly consistent with expectations from the streaming instability, which is the leading mechanism for the formation of planetesimals in the trans-Neptunian disk. The observed JTs' pole distribution has a slightly smaller prograde vs. retrograde asymmetry (excess of obliquities > 130 deg) than what is expected from the existing streaming instability simulations. However, this discrepancy can be plausibly reconciled by the effects of the post-formation collisional activity. Our numerical simulations of the post-capture spin evolution indicate that the JTs' pole distribution is not significantly affected by dynamical processes such as the eccentricity excitation in resonances, close encounters with planets, or the effects of nongravitational forces. However, a few JTs exhibit large latitude variations of the rotation pole and may even temporarily transition between prograde- and retrograde-rotating categories.

Keywords
  1. solar-system
  2. asteroids
  3. ccd-photometry
Bibliographic source Bibcode
2023A&A...679A..56H
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/679/A56
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/679/A56
Document Object Identifer DOI
doi:10.26093/cds/vizier.36790056

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/679/A56
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/679/A56
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/679/A56
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2023-11-03T07:37:35Z
Resource record created
2023-11-03T07:37:35Z
Created
2023-12-14T01:21:52Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr