S-index for 3130 red giant stars Virtual Observatory Resource

Authors
  1. Gehan C.
  2. Gaulme P.
  3. Yu J.
  4. Published by
    CDS
Abstract

According to dynamo theory, stars with convective envelopes efficiently generate surface magnetic fields, which manifest as magnetic activity in the form of starspots, faculae, flares, when their rotation period is shorter than their convective turnover time. Most red giants, having undergone significant spin down while expanding, have slow rotation and no spots. However, based on a sample of about 4500 red giants observed by the NASA Kepler mission, a previous study showed that about 8% display spots, including about 15% that belong to close binary systems. Here, we shed light on a puzzling fact: for rotation periods less than 80 days, a red giant that belongs to a close binary system displays a photometric modulation about an order of magnitude larger than that of a single red giant with similar rotational period and physical properties. We investigate whether binarity leads to larger magnetic fields when tides lock systems, or if a different spot distribution on single versus close binary stars can explain this fact. For this, we measure the chromospheric emission in the CaII H and K lines of 3130 of the 4465 stars studied in a previous work thanks to the LAMOST survey. We show that red giants in a close-binary configuration with spin-orbit resonance display significantly larger chromospheric emission than single stars, suggesting that tidal locking leads to larger magnetic fields at a fixed rotational period. Beyond bringing interesting new observables to study the evolution of binary systems, this result could be used to distinguish single versus binary red giants in automatic pipelines based on machine learning.

Keywords
  1. asteroseismology
  2. giant-stars
  3. visible-astronomy
Bibliographic source Bibcode
2022A&A...668A.116G
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/668/A116
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/668/A116
Document Object Identifer DOI
doi:10.26093/cds/vizier.36680116

Access

IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/668/A116/table1?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/668/A116/table1?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/668/A116/table1?

History

2022-12-09T08:05:47Z
Resource record created
2022-12-09T08:05:47Z
Created
2024-11-06T20:01:31Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr