OGLE-2019-BLG-0033/MOA-2019-BLG-035 light curves Virtual Observatory Resource

Authors
  1. Herald A.
  2. Udalski A.
  3. Bozza V.
  4. Rota P.
  5. Bond I.A.
  6. Yee J.C.
  7. Sajadian S.Mroz P.
  8. Poleski R.
  9. Skowron J.
  10. Szymanski M.K.
  11. Soszynski I.,Pietrukowicz P.
  12. Kozlowski S.
  13. Ulaczyk K.
  14. Rybicki K.A.
  15. Iwanek P.,Wrona M.
  16. Gromadzki M. (The OGLE collaboration)Abe F.
  17. Barry R.
  18. Bennett D.P.
  19. Bhattacharya A.
  20. Fukui A.
  21. Fujii H.,Hirao Y.
  22. Itow Y.
  23. Kirikawa R.
  24. Kondo I.
  25. Koshimoto N.
  26. Matsubara Y.,Matsumoto S.
  27. Miyazaki S.
  28. Muraki Y.
  29. Olmschenk G.
  30. Ranc C.
  31. Okamura A.,Rattenbury N.J.
  32. Satoh Y.
  33. Sumi T.
  34. Suzuki D.
  35. Ishitani Silva S.,Toda T.
  36. Tristram P.J.
  37. Vandorou A.
  38. Yama H. (The MOA collaboration)Beichman C.A.
  39. Bryden G.
  40. Calchi Novati S.
  41. Carey S.
  42. Gaudi B.S.,Gould A.
  43. Henderson C.B.
  44. Johnson S.
  45. Shvartzvald Y.
  46. Zhu W.(The Spitzer team)Dominik M.
  47. Hundertmark M.
  48. Jorgensen U.G.
  49. Longa-Pena P.
  50. Skottfelt J.,Tregloan-Reed J.
  51. Bach-Moller N.
  52. Burgdorf M.
  53. D'Ago G.
  54. Haikala L.,Hitchcock J.
  55. Khalouei E.
  56. Peixinho N.
  57. Rahvar S.
  58. Snodgrass C.,Southworth J.
  59. Spyratos P. (The MiNDSTEp consortium)Zang W.
  60. Yang H.
  61. Mao S.
  62. Bachelet E.
  63. Maoz D.
  64. Street R.A.
  65. Tsapras Y.,Christie G.W.
  66. Cooper T.
  67. de Almeida L.
  68. do Nascimento Jr J.-D.,Green J.
  69. Han C.
  70. Hennerley S.
  71. Marmont A.
  72. McCormick J.,Monard L.A.G.
  73. Natusch T.
  74. Pogge R.(The LCO & {mu}FUN collaboration)
  75. Published by
    CDS
Abstract

Brown dwarfs are poorly understood transition objects between stars and planets, with several competing mechanisms having been proposed for their formation. Mass measurements are generally difficult for isolated objects but also for brown dwarfs orbiting low-mass stars, which are often too faint for spectroscopic follow-up. Microlensing provides an alternative tool for the discovery and investigation of such faint systems. Here we present the analysis of the microlensing event OGLE-2019-BLG-0033/MOA-2019-BLG-035, which is due to a binary system composed of a brown dwarf orbiting a red dwarf. Thanks to extensive ground observations and the availability of space observations from Spitzer, it has been possible to obtain accurate estimates of all microlensing parameters, including parallax, source radius and orbital motion of the binary lens. After accurate modeling, we find that the lens is composed of a red dwarf with mass M1=0.149+/-0.010M_{sun}_ and a brown dwarf with mass M2=0.0463+/-0.0031M_{sun}_, at a projected separation of a=0.585au. The system has a peculiar velocity that is typical of old metal-poor populations in the thick disk. Percent precision in the mass measurement of brown dwarfs has been achieved only in a few microlensing events up to now, but will likely become common with the Roman space telescope.

Keywords
  1. Gravitational lensing
  2. Multiple stars
  3. Exoplanets
  4. Photometry
Bibliographic source Bibcode
2022A&A...663A.100H
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/663/A100
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/663/A100
Document Object Identifer DOI
doi:10.26093/cds/vizier.36630100

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/663/A100
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/663/A100
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/663/A100
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2022-07-19T13:02:46Z
Resource record created
2022-07-19T13:02:46Z
Created
2022-11-25T14:07:27Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr