Active deep learning in large spectros. surveys Virtual Observatory Resource

Authors
  1. Skoda P.
  2. Podsztavek O.
  3. Tvrdik P.
  4. Published by
    CDS
Abstract

Current archives of the LAMOST telescope contain millions of pipeline-processed spectra that have probably never been seen by human eyes. Most of the rare objects with interesting physical properties, however, can only be identified by visual analysis of their characteristic spectral features. A proper combination of interactive visualisation with modern machine learning techniques opens new ways to discover such objects. We apply active learning classification methods supported by deep convolutional neural networks to automatically identify complex emission-line shapes in multi-million spectra archives. We used the pool-based uncertainty sampling active learning method driven by a custom-designed deep convolutional neural network with 12 layers. The architecture of the network was inspired by VGGNet, AlexNet, and ZFNet, but it was adapted for operating on one-dimensional feature vectors. The unlabelled pool set is represented by 4.1 million spectra from the LAMOST data release 2 survey. The initial training of the network was performed on a labelled set of about 13000 spectra obtained in the 400{AA} wide region around H{alpha} by the 2m Perek telescope of the Ondrejov observatory, which mostly contains spectra of Be and related early-type stars. The differences between the Ondrejov intermediate-resolution and the LAMOST low-resolution spectrographs were compensated for by Gaussian blurring and wavelength conversion. After several iterations, the network was able to successfully identify emission-line stars with an error smaller than 6.5%. Using the technology of the Virtual Observatory to visualise the results, we discovered 1013 spectra of 948 new candidates of emission-line objects in addition to 664 spectra of 549 objects that are listed in SIMBAD and 2644 spectra of 2291 objects identified in an earlier paper of a Chinese group led by Wen Hou. The most interesting objects with unusual spectral properties are discussed in detail.

Keywords
  1. surveys
  2. emission-line-stars
  3. spectroscopy
Bibliographic source Bibcode
2020A&A...643A.122S
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/643/A122
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/643/A122
Document Object Identifer DOI
doi:10.26093/cds/vizier.36430122

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/643/A122
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/643/A122
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/643/A122
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/643/A122/cans-new?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/643/A122/cans-new?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/643/A122/cans-new?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/643/A122/cans-hou?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/643/A122/cans-hou?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/643/A122/cans-hou?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/643/A122/cans-sim?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/643/A122/cans-sim?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/643/A122/cans-sim?
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/643/A122/cans-bad?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/643/A122/cans-bad?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/643/A122/cans-bad?

History

2020-11-11T15:36:05Z
Resource record created
2020-11-11T15:36:05Z
Created
2022-09-07T09:04:39Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr