3C 279 Event Horizon Telescope imaging Virtual Observatory Resource

Authors
  1. Kim J.-Y.
  2. Krichbaum T.P.
  3. Broderick A.E.
  4. Wielgus M.
  5. Blackburn L.,Gomez J.L.
  6. Johnson M.D.
  7. Bouman K.L.
  8. Chael A.
  9. Akiyama K.
  10. Jorstad S.,Marscher A.P.
  11. Issaoun S.
  12. Janssen M.
  13. Chan C.-k.
  14. Savolainen T.,Pesce D.W.
  15. Oezel F.
  16. Alberdi A.
  17. Alef W.
  18. Asada K.
  19. Azulay R.,Baczko A.-K.
  20. Ball D.
  21. Balokovi'c M.
  22. Barrett J.
  23. Bintley D.
  24. Boland W.,Bower G.C.
  25. Bremer M.
  26. Brinkerink C.D.
  27. Brissenden R.
  28. Britzen S.,Broguiere D.
  29. Bronzwaer T.
  30. Byun D.-Y.
  31. Carlstrom J.E.
  32. Chatterjee S.,Chatterjee K.
  33. Chen M.-T.
  34. Chen Y.
  35. Cho I.
  36. Christian P.
  37. Conway J.E.,Cordes J.M.
  38. Crew G.B.
  39. Cui Y.
  40. Davelaar J.
  41. De Laurentis M.
  42. Deane R.,Dempsey J.
  43. Desvignes G.
  44. Dexter J.
  45. Doeleman S.S.
  46. Eatough R.P.,Falcke H.
  47. Fish V.L.
  48. Fomalont E.
  49. Fraga-Encinas R.
  50. Friberg P.,Fromm C.M.
  51. Galison P.
  52. Gammie C.F.
  53. Garcia R.
  54. Gentaz O.
  55. Georgiev B.,Goddi C.
  56. Gold R.
  57. Gu M.
  58. Gurwell M.
  59. Hada K.
  60. Hecht M.H.
  61. Hesper R.,Ho L.C.
  62. Ho P.
  63. Honma M.
  64. Huang C.-W.L.
  65. Huang L.
  66. Hughes D.H.
  67. Ikeda S.,Inoue M.
  68. James D.J.
  69. Jannuzi B.T.
  70. Jeter B.
  71. Jiang W.
  72. Jimenez-Rosales A.,Jung T.
  73. Karami M.
  74. Karuppusamy R.
  75. Kawashima T.
  76. Keating G.K.,Kettenis M.
  77. Kim J.
  78. Kim J.
  79. Kino M.
  80. Koay J.Y.
  81. Koch P.M.
  82. Koyama S.,Kramer M.
  83. Kramer C.
  84. Kuo C.-Y.
  85. Lauer T.R.
  86. Lee S.-S.
  87. Li Y.-R.
  88. Li Z.,Lindqvist M.
  89. Lico R.
  90. Liu K.
  91. Liuzzo E.
  92. Lo W.-P.
  93. Lobanov A.P.,Loinard L.
  94. Lonsdale C.
  95. Lu R.-S.
  96. MacDonald N.R.
  97. Mao J.
  98. Marko S.,Marrone D.P.
  99. Marti-Vidal I.
  100. Matsushita S.
  101. Matthews L.D.
  102. Medeiros L.,Menten K.M.
  103. Mizuno Y.
  104. Mizuno I.
  105. Moran J.M.
  106. Moriyama K.,Moscibrodzka M.
  107. Mueller C.
  108. Nagai H.
  109. Nagar N.M.
  110. Nakamura M.
  111. Narayan R.,Narayanan G.
  112. Natarajan I.
  113. Neri R.
  114. Ni C.
  115. Noutsos A.
  116. Okino H.,Olivares H.
  117. Ortiz-Leon G.N.
  118. Oyama T.
  119. Palumbo D.C.M.
  120. Park J.
  121. Patel N.,Pen U.-L.
  122. Pietu V.
  123. Plambeck R.
  124. PopStefanija A.
  125. Porth O.
  126. Prather B.,Preciado-Lopez J.A.
  127. Psaltis D.
  128. Pu H.-Y.
  129. Ramakrishnan V.
  130. Rao R.,Rawlings M.G.
  131. Raymond A.W.
  132. Rezzolla L.
  133. Ripperda B.
  134. Roelofs F.,Rogers A.
  135. Ros E.
  136. Rose M.
  137. Roshanineshat A.
  138. Rottmann H.
  139. Roy A.L.,Ruszczyk C.
  140. Ryan B.R.
  141. Rygl K.L.J.
  142. Sanchez S.
  143. Sanchez-Arguelles D.,Sasada M.
  144. Schloerb F.P.
  145. Schuster K.-F.
  146. Shao L.
  147. Shen Z.
  148. Small D.,Sohn B.W.
  149. SooHoo J.
  150. Tazaki F.
  151. Tiede P.
  152. Tilanus R.P.J.
  153. Titus M.,Toma K.
  154. Torne P.
  155. Trent T.
  156. Traianou E.
  157. Trippe S.
  158. Tsuda S.,van Bemmel I.
  159. van Langevelde H.J.
  160. van Rossum D.R.
  161. Wagner J.
  162. Wardle J.,Ward-Thompson D.
  163. Weintroub J.
  164. Wex N.
  165. Wharton R.
  166. Wong G.N.
  167. Wu Qi.,Yoon D.
  168. Young A.
  169. Young K.
  170. Younsi Z.
  171. Yuan F.
  172. Yuan Y.-F.
  173. Zensus J.A.,Zhao G.
  174. Zhao S.-S.
  175. Zhu Z.
  176. Algaba J.-C.
  177. Allardi A.
  178. Amestica R.,Anczarski J.
  179. Bach U.
  180. Bagano F.K.
  181. Beaudoin C.
  182. Benson B.A.
  183. Berthold R.,Blanchard J.M.
  184. Blundell R.
  185. Bustamente S.
  186. Cappallo R.,Castillo-Dominguez E.
  187. Chang C.-C.
  188. Chang S.-H.
  189. Chang S.-C.
  190. Chen C.-C.,Chilson R.
  191. Chuter T.C.
  192. Cordova Rosado R.
  193. Coulson I.M.
  194. Crowley J.,Derome M.
  195. Dexter M.
  196. Dornbusch S.
  197. Dudevoir K.A.
  198. Dzib S.A.
  199. Eckart A.,Eckert C.
  200. Erickson N.R.
  201. Everett W.B.
  202. Faber A.
  203. Farah J.R.
  204. Fath V.,Folkers T.W.
  205. Forbes D.C.
  206. Freund R.
  207. Gomez-Ruiz A.I.
  208. Gale D.M.
  209. Gao F.,Geertsema G.
  210. Graham D.A.
  211. Greer C.H.
  212. Grosslein R.
  213. Gueth F.
  214. Haggard D.,Halverson N.W.
  215. Han C.-C.
  216. Han K.-C.
  217. Hao J.
  218. Hasegawa Y.
  219. Henning J.W.,Hernandez-Gomez A.
  220. Herrero-Illana R.
  221. Heyminck S.
  222. Hirota A.
  223. Hoge J.,Huang Y.-D.
  224. Impellizzeri C.M.V.
  225. Jiang H.
  226. John D.
  227. Kamble A.
  228. Keisler R.,Kimura K.
  229. Kono Y.
  230. Kubo D.
  231. Kuroda J.
  232. Lacasse R.
  233. Laing R.A.,Leitch E.M.
  234. Li C.-T.
  235. Lin L.C.-C.
  236. Liu C.-T.
  237. Liu K.-Y.
  238. Lu L.-M.,Marson R.G.
  239. Martin-Cocher P.L.
  240. Massingill K.D.
  241. Matulonis C.,McColl M.P.
  242. McWhirter S.R.
  243. Messias H.
  244. Meyer-Zhao Z.
  245. Michalik D.,Montana A.
  246. Montgomerie W.
  247. Mora-Klein M.
  248. Muders D.
  249. Nadolski A.,Navarro S.
  250. Neilsen J.
  251. Nguyen C.H.
  252. Nishioka H.
  253. Norton T.
  254. Nowak M.A.,Nystrom G.
  255. Ogawa H.
  256. Oshiro P.
  257. Oyama T.
  258. Parsons H.
  259. Penalver J.,Phillips N.M.
  260. Poirier M.
  261. Pradel N.
  262. Primiani R.A.
  263. Ran P.A.
  264. Rahlin A.S.,Reiland G.
  265. Risacher C.
  266. Ruiz I.
  267. Saez-Madain A.F.
  268. Sassella R.,Schellart P.
  269. Shaw P.
  270. Silva K.M.
  271. Shiokawa H.
  272. Smith D.R.
  273. Snow W.,Souccar K.
  274. Sousa D.
  275. Sridharan T.K.
  276. Srinivasan R.
  277. Stahm W.
  278. Stark A.A.,Story K.
  279. Timmer S.T.
  280. Vertatschitsch L.
  281. Walther C.
  282. Wei T.-S.,Whitehorn N.
  283. Whitney A.R.
  284. Woody D.P.
  285. Wouterloot J.G.A.
  286. Wright M.,Yamaguchi P.
  287. Yu C.-Y.
  288. Zeballos M.
  289. Zhang S.
  290. Ziurys L.(The Event Horizon Telescope Collaboration)
  291. Published by
    CDS
Abstract

3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable gamma-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope (EHT) at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of ~20uarcsec (at a redshift of z=0.536 this corresponds to ~0.13pc, ~1700 Schwarzschild radii with a black hole mass M_BH_=8x10^8^M_{sun}_). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation. We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across different imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet. We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ~15c and ~20c (~1.3 and ~1.7uarcsec/day, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are <~10^10^K, a magnitude or more lower than typical values seen at >=7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C279 becomes optically thin at short (mm) wavelengths.

Keywords
  1. radio-galaxies
  2. interferometry
Bibliographic source Bibcode
2020A&A...640A..69K
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/640/A69
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/640/A69
Document Object Identifer DOI
doi:10.26093/cds/vizier.36400069

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/640/A69
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/640/A69
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/640/A69
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2020-08-12T07:22:04Z
Resource record created
2020-08-12T07:22:04Z
Created
2021-03-23T13:35:02Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr