Thermal properties of slow asteroids Virtual Observatory Resource

Authors
  1. Marciniak A.
  2. Ali-Lagoa V
  3. Mueller T.G.
  4. Szakats R.
  5. Molnar L.
  6. Pal A.,Podlewska-Gaca E.
  7. Parley N.
  8. Antonini P.
  9. Barbotin E.
  10. Behrend R.,Bernasconi L.
  11. Butkiewicz-Bak M.
  12. Crippa R.
  13. Duffard R.
  14. Ditteon R.,Feuerbach M.
  15. Fauvaud S.
  16. Garlitz J.
  17. Geier S.
  18. Goncalves R.
  19. Grice J.,Grzeskowiak I.
  20. Hirsch R.
  21. Horbowicz J.
  22. KamiNski K.
  23. KamiNska M.K.,Kim D.-H.
  24. Kim M.-J.
  25. Konstanciak I.
  26. Kudak V.
  27. Kulczak P.
  28. Maestre J.L.,Manzini F.
  29. Marks S.
  30. Monteiro F.
  31. Ogloza W.
  32. Oszkiewicz D.
  33. Pilcher F.,Perig V.
  34. Polakis T.
  35. PoliNska M.
  36. Roy R.
  37. Sanabria J.J.
  38. Santana-Ros T.,Skiff B.
  39. Skrzypek J.
  40. Sobkowiak K.
  41. Sonbas E.
  42. Thizy O.
  43. Trela P.,Urakawa S.
  44. Zejmo M.
  45. Zukowski K.
  46. Published by
    CDS
Abstract

Earlier work suggests that slowly rotating asteroids should have higher thermal inertias than faster rotators because the heat wave penetrates deeper into the subsurface. However, thermal inertias have been determined mainly for fast rotators due to selection effects in the available photometry used to obtain shape models required for thermophysical modelling (TPM). Our aims are to mitigate these selection effects by producing shape models of slow rotators, to scale them and compute their thermal inertia with TPM, and to verify whether thermal inertia increases with the rotation period. To decrease the bias against slow rotators, we conducted a photometric observing campaign of main-belt asteroids with periods longer than 12h, from multiple stations worldwide, adding in some cases data from WISE and Kepler space telescopes. For spin and shape reconstruction we used the lightcurve inversion method, and to derive thermal inertias we applied a thermophysical model to fit available infrared data from IRAS, AKARI, and WISE. We present new models of 11 slow rotators that provide a good fit to the thermal data. In two cases, the TPM analysis showed a clear preference for one of the two possible mirror solutions. We derived the diameters and albedos of our targets in addition to their thermal inertias, which ranged between 3_-3_^+33^ and 45_-30_^+60^J/m^2^/s^1/2^/K. Together with our previous work, we have analysed 16 slow rotators from our dense survey with sizes between 30 and 150 km. The current sample thermal inertias vary widely, which does not confirm the earlier suggestion that slower rotators have higher thermal inertias.

Keywords
  1. solar-system
  2. asteroids
Bibliographic source Bibcode
2019A&A...625A.139M
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/625/A139
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/625/A139
Document Object Identifer DOI
doi:10.26093/cds/vizier.36250139

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/625/A139
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/625/A139
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/625/A139
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2019-05-28T11:00:44Z
Resource record created
2019-05-28T11:00:44Z
Created
2019-07-24T12:05:42Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr