2015 BL Lac VHE gamma-ray flare Virtual Observatory Resource

Authors
  1. MAGIC Collaboration
  2. Acciari V.A.
  3. Ansoldi S.
  4. Antonelli L.A.,Arbet Engels A.
  5. Baack D.
  6. Babic A.
  7. Banerjee B.
  8. Bangale P.,Barres de Almeida U.
  9. Barrio J.A.
  10. Becerra Gonzalez J.
  11. Bednarek W.,Bernardini E.
  12. Berti A.
  13. Besenrieder J.
  14. Bhattacharyya W.
  15. Bigongiari C.,Biland A.
  16. Blanch O.
  17. Bonnoli G.
  18. Carosi R.
  19. Ceribella G.
  20. Cikota S.,Colak S.M.
  21. Colin P.
  22. Colombo E.
  23. Contreras J.L.
  24. Cortina J.
  25. Covino S.,D'Elia V.
  26. Da Vela P.
  27. Dazzi F.
  28. De Angelis A.
  29. De Lotto B.
  30. Delfino M.,Delgado J.
  31. Di Pierro F.
  32. Do Souto Espinera E.
  33. Dominguez A.,Dominis Prester D.
  34. Dorner D.
  35. Doro M.
  36. Einecke S.
  37. Elsaesser D.,Fallah Ramazani V.
  38. Fattorini A.
  39. Fernandez-Barral A.
  40. Ferrara G.,Fidalgo D.
  41. Foffano L.
  42. Fonseca M.V.
  43. Font L.
  44. Fruck C.
  45. Galindo D.,Gallozzi S.
  46. Garcia Lopez R.J.
  47. Garczarczyk M.
  48. Gaug M.
  49. Giammaria P.,Godinovic N.
  50. Guberman D.
  51. Hadasch D.
  52. Hahn A.
  53. Hassan T.
  54. Herrera J.,Hoang J.
  55. Hrupec D.
  56. Inoue S.
  57. Ishio K.
  58. Iwamura Y.
  59. Kubo H.
  60. Kushida J.,Kuvezdic D.
  61. Lamastra A.
  62. Lelas D.
  63. Leone F.
  64. Lindfors E.
  65. Lombardi S.,Longo F.
  66. Lopez M.
  67. Lopez-Oramas A.
  68. Maggio C.
  69. Majumdar P.
  70. Makariev M.,Maneva G.
  71. Manganaro M.
  72. Mannheim K.
  73. Maraschi L.
  74. Mariotti M.
  75. Martinez M.,Masuda S.
  76. Mazin D.
  77. Minev M.
  78. Miranda J.M.
  79. Mirzoyan R.
  80. Molina E.,Moralejo A.
  81. Moreno V.
  82. Moretti E.
  83. Munar-Adrover P.
  84. Neustroev V.,Niedzwiecki A.
  85. Nievas Rosillo M.
  86. Nigro C.
  87. Nilsson K.
  88. Ninci D.,Nishijima K.
  89. Noda K.
  90. Nogues L.
  91. Noethe M.
  92. Paiano S.
  93. Palacio J.,Paneque D.
  94. Paoletti R.
  95. Paredes J.M.
  96. Pedaletti G.
  97. Penil P.
  98. Peresano M.,Persic M.
  99. Prada Moroni P.G.
  100. Prandini E.
  101. Puljak I.
  102. Garcia J.R.
  103. Rhode W.,Ribo M.
  104. Rico J.
  105. Righi C.
  106. Rugliancich A.
  107. Saha L.
  108. Saito T.
  109. Satalecka K.,Schweizer T.
  110. Sitarek J.
  111. Snidaric I.
  112. Sobczynska D.
  113. Somero A.,Stamerra A.
  114. Strzys M.
  115. Suric T.
  116. Tavecchio F.
  117. Temnikov P.
  118. Terzic T.,Teshima M.
  119. Torres-Alba N.
  120. Tsujimoto S.
  121. van Scherpenberg J.
  122. Vanzo G.,Vazquez Acosta M.
  123. Vovk I.
  124. Will M.
  125. Zaric D.
  126. D'Ammando F.
  127. Hada K.,Jorstad S.
  128. Marscher A.P.
  129. Mobeen M.Z.
  130. Hovatta T.
  131. Larionov V.M.,Borman G.A.
  132. Grishina T.S.
  133. Kopatskaya E.N.
  134. Morozova D.A.
  135. Nikiforova A.A.,Laehteenmaeki A.
  136. Tornikoski M.
  137. Agudo I.
  138. Published by
    CDS
Abstract

The mechanisms producing fast variability of the {gamma}-ray emission in active galactic nuclei (AGNs) are under debate. The MAGIC telescopes detected a fast, very-high-energy (VHE, E>100GeV) {gamma}-ray flare from BL Lacertae on 2015 June 15. The flare had a maximum flux of (1.5+/-0.3)x10^-10^photons/cm^2^/s and halving time of 26+/-8min. The MAGIC observations were triggered by a high state in the optical and high-energy (HE, E>100MeV) {gamma}-ray bands. In this paper we present the MAGIC VHE {gamma}-ray data together with multi-wavelength data from radio, optical, X-rays, and HE {gamma} rays from 2015 May 1 to July 31. Well-sampled multi-wavelength data allow us to study the variability in detail and compare it to the other epochs when fast, VHE {gamma}-ray flares have been detected from this source. Interestingly, we find that the behaviour in radio, optical, X-rays, and HE {gamma}-rays is very similar to two other observed VHE {gamma}-ray flares. In particular, also during this flare there was an indication of rotation of the optical polarization angle and of activity at the 43GHz core. These repeating patterns indicate a connection between the three events. We also test modelling of the spectral energy distribution based on constraints from the light curves and VLBA observations, with two different geometrical setups of two-zone inverse Compton models. In addition we model the {gamma}-ray data with the star-jet interaction model. We find that all of the tested emission models are compatible with the fast VHE {gamma}-ray flare, but all have some tension with the multi-wavelength observations.

Keywords
  1. gamma-ray-astronomy
  2. bl-lacertae-objects
Bibliographic source Bibcode
2019A&A...623A.175M
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/623/A175
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/623/A175
Document Object Identifer DOI
doi:10.26093/cds/vizier.36230175

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/623/A175
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/623/A175
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/623/A175
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2019-03-29T08:56:47Z
Resource record created
2019-03-29T08:56:47Z
Created
2019-04-08T12:58:01Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr