324 CARMENES M dwarfs velocities Virtual Observatory Resource

Authors
  1. Reiners A.
  2. Zechmeister M.
  3. Caballero J.A.
  4. Ribas I.
  5. Morales J.C.,Jeffers S.V.
  6. Schofer P.
  7. Tal-Or L.
  8. Quirrenbach A.
  9. Amado P.J.,Kaminski A.
  10. Seifert W.
  11. Abril M.
  12. Aceituno J.
  13. Alonso-Floriano F.J.,Ammler-Von Eiff M.
  14. Antona R.
  15. Anglada-Escude G.
  16. Anwand-Heerwart H.,Arroyo-Torres B.
  17. Azzaro M.
  18. Baroch D.
  19. Barrado D.
  20. Bauer F.F.,Becerril S.
  21. Bejar V.J.S.
  22. Benitez D.
  23. Berdinas Z.M.
  24. Bergond G.,Blumcke M.
  25. Brinkmoller M.
  26. Del Burgo C.
  27. Cano J.
  28. Cardenas Vazquez M.C.,Casal E.
  29. Cifuentes C.
  30. Claret A.
  31. Colome J.
  32. Cortes-Contreras M.,Czesla S.
  33. Diez-Alonso E.
  34. Dreizler S.
  35. Feiz C.
  36. Fernandez M.
  37. Ferro I.M.,Fuhrmeister B.
  38. Galadi-Enriquez D.
  39. Garcia-Piquer A.
  40. Garcia Vargas M.L.,Gesa L.
  41. Gomez Galera V.
  42. Gonzalez Hernandez J.I.
  43. Gonzalez-Peinado R.,Grozinger U.
  44. Grohnert S.
  45. Guardia J.
  46. Guenther E.W.
  47. Guijarro A.,De Guindos E.
  48. Gutierrez-Soto J.
  49. Hagen H.-J.
  50. Hatzes A.P.,Hauschildt P.H.
  51. Hedrosa R.P.
  52. Helmling J.
  53. Henning T.
  54. Hermelo I.,Hernandez Arabi R.
  55. Hernandez Castano L.
  56. Hernandez Hernando F.,Herrero E.
  57. Huber A.
  58. Huke P.
  59. Johnson E.N.
  60. De Juan E.
  61. Kim M.
  62. Klein R.,Kluter J.
  63. Klutsch A.
  64. Kurster M.
  65. Lafarga M.
  66. Lamert A.
  67. Lampon M.,Lara L.M.
  68. Laun W.
  69. Lemke U.
  70. Lenzen R.
  71. Launhardt R.
  72. Lopez Del Fresno M.,Lopez-Gonzalez J.
  73. Lopez-Puertas M.
  74. Lopez Salas J.F.
  75. Lopez-Santiago J.,Luque R.
  76. Magan Madinabeitia H.
  77. Mall U.
  78. Mancini L.
  79. Mandel H.
  80. Marfil E.,Marin Molina J.A.
  81. Maroto Fernandez D.
  82. Martin E.L.
  83. Martin-Ruiz S.,Marvin C.J.
  84. Mathar R.J.
  85. Mirabet E.
  86. Montes D.
  87. Moreno-Raya M.E.
  88. Moya A.,Mundt R.
  89. Nagel E.
  90. Naranjo V.
  91. Nortmann L.
  92. Nowak G.
  93. Ofir A.
  94. Oreiro R.,Palle E.
  95. Panduro J.
  96. Pascual J.
  97. Passegger V.M.
  98. Pavlov A.
  99. Pedraz S.,Perez-Calpena A.
  100. Perez Medialdea D.
  101. Perger M.
  102. Perryman M.A.C.
  103. Pluto M.,Rabaza O.
  104. Ramon A.
  105. Rebolo R.
  106. Redondo P.
  107. Reffert S.
  108. Reinhart S.,Rhode P.
  109. Rix H.-W.
  110. Rodler F.
  111. Rodriguez E.
  112. Rodriguez-Lopez C.,Rodriguez Trinidad A.
  113. Rohloff R.-R.
  114. Rosich A.
  115. Sadegi S.,Sanchez-Blanco E.
  116. Sanchez Carrasco M.A.
  117. Sanchez-Lopez A.,Sanz-Forcada J.
  118. Sarkis P.
  119. Sarmiento L.F.
  120. Schafer S.
  121. Schmitt J.H.M.M.,Schiller J.
  122. Schweitzer A.
  123. Solano E.
  124. Stahl O.
  125. Strachan J.B.P.,Sturmer J.
  126. Suarez J.C.
  127. Tabernero H.M.
  128. Tala M.
  129. Trifonov T.,Tulloch S.M.
  130. Ulbrich R.G.
  131. Veredas G.
  132. Vico Linares J.I.
  133. Vilardell F.,Wagner K.
  134. Winkler J.
  135. Wolthoff V.
  136. Xu W.
  137. Yan F.
  138. Zapatero Osorio M.R.
  139. Published by
    CDS
Abstract

The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520-1710nm at a resolution of at least R>80000, and we measure its RV, H{alpha} emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700-900nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1m/s in very low mass M dwarfs at longer wavelengths likely requires the use of a 10m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4m/s.

Keywords
  1. m-stars
  2. dwarf-stars
  3. radial-velocity
Bibliographic source Bibcode
2018A&A...612A..49R
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/612/A49
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/612/A49
Document Object Identifer DOI
doi:10.26093/cds/vizier.36120049

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/612/A49
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/612/A49
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/612/A49
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/612/A49/tableb1?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/612/A49/tableb1?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/612/A49/tableb1?

History

2018-06-25T07:45:28Z
Resource record created
2018-06-25T07:45:28Z
Created
2019-10-01T11:13:44Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr