Time-series photometry of V391 Peg Virtual Observatory Resource

Authors
  1. Silvotti R.
  2. Schuh S.
  3. Kim S.-L.
  4. Lutz R.
  5. Reed M.
  6. Benatti S.
  7. Janulis R.,Lanteri L.
  8. Ostensen R.
  9. Marsh T.R.
  10. Dhillon V.S.
  11. 10
  12. Paparo M.
  13. Molnar L.
  14. Published by
    CDS
Abstract

V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O-C method, the presence of a planet was inferred with an orbital period of 3.2yr and a minimum mass of 3.2M_Jup_ (Silvotti et al., 2007Natur.449..189S). In this article we present an updated O-C analysis using a larger data set of 1066 hours of photometric time series (~2.5x larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999-2006 of the previous analysis). Up to the end of 2008, the new O-C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O-C trend of f1 changes, and the time derivative of the pulsation period (dP/dt) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O-C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O-C diagrams of f1 and f2 , but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analysed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of dP/dt for f1 and f2: using only the data up to the end of 2008, we obtain dP/dt1=(1.34+/-0.04)x10^-12^ and dP/dt2=(1.62+/-0.22)x10^-12^. The long-term variation of the two main pulsation periods (and the change of sign of dP/dt_1_) is visible also in direct measurements made over several years. The absence of peaks near f1 in the Fourier transform and the secondary peak close to f2 confirm a previous identification as l=0 and l=1, respectively, and suggest a stellar rotation period of about 40 days. The new data allow constraining the main g-mode pulsation periods of the star.

Keywords
  1. Horizontal branch stars
  2. Subdwarf stars
  3. Photometry
Bibliographic source Bibcode
2018A&A...611A..85S
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/611/A85
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/611/A85
Document Object Identifer DOI
doi:10.26093/cds/vizier.36110085

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/611/A85
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/611/A85
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/611/A85
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2018-04-06T15:07:29Z
Resource record created
2018-04-06T15:07:29Z
Created
2018-05-16T07:16:32Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr