Local production rates of 67P/CG from MIRO Virtual Observatory Resource

Authors
  1. Marshall D.W.
  2. Hartogh P.
  3. Rezac L.
  4. von Allmen P.
  5. Biver N.,Bockelee-Morvan D.
  6. Crovisier J.
  7. Encrenaz P.
  8. Gulkis S.
  9. Hofstadter M.,Ip W.-H.
  10. Jarchow C.
  11. Lee S.
  12. Lellouch E.
  13. Published by
    CDS
Abstract

Using spectroscopic and continuum data measured by the MIRO instrument on board Rosetta of comet 67P/Churyumov-Gerasimenko, it is possible to derive and track the change in the water production rate, to learn how the outgassing evolves with heliocentric distance. The MIRO data are well suited to investigate the evolution of 67P, in unprecedented spatial and temporal detail. To obtain estimates of the local effective Haser production rates we developed an efficient and reliable retrieval approach with precalculated lookup tables. We employed line area ratios (H_2_^16^O/H_2_^18^O) from pure nadir observations as the key variable, along with the Doppler shift velocity, and continuum temperature. This method was applied to the MIRO data from August 2014 until April 2016. Perihelion occurred on August 13, 2015 when the comet was 1.24AU from the Sun. During the perihelion approach, the water production rates increased by an order of magnitude, and from the observations, the derived maximum for a single observation on August 29, 2015 is (1.42+/-0.51)x10^28^. Modelling the data indicates that there is an offset in the peak outgassing, occurring 34+/-10 days after perihelion. During the pre-perihelion phase, the production rate changes with heliocentric distance as r_h_^-3.8+/-0.2^; during post- perihelion, the dependence is r_h_^-4.3+/-0.2^. The comet is calculated to have lost 0.12+/-0.06% of its mass during the perihelion passage, considering only water ice sublimation. Additionally, this method provides well- sampled data to determine the spatial distribution of outgassing versus heliocentric distance. The time evolution is definitely not uniform across the surface. Pre- and post-perihelion, the surface temperature on the southern hemisphere changes rapidly, as does the sublimation rate with an exponent of ~-6. There is a strong latitudinal dependence on the r_h_ exponent with significant variation between northern and southern hemispheres, and so the average over the comet surface may only be of limited importance. We present more detailed regional variation in the outgassing, thereby demonstrating that the highest derived production rates originate from the Wosret, Neith, and Bes regions during perihelion.

Keywords
  1. comets
  2. spectroscopy
Bibliographic source Bibcode
2017A&A...603A..87M
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/603/A87
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/603/A87
Document Object Identifer DOI
doi:10.26093/cds/vizier.36030087

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/603/A87
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/603/A87
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/603/A87
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).

History

2017-07-11T07:55:11Z
Resource record created
2017-07-11T07:55:11Z
Created
2018-09-25T13:15:07Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr