HADES RV Programme with HARPS-N at TNG. II. Virtual Observatory Resource

Authors
  1. Perger M.
  2. Garcia-Piquer A.
  3. Ribas I.
  4. Morales J.C.
  5. Affer L.
  6. Micela G.,Damasso M.
  7. Suarez-Mascareno A.
  8. Gonzalez-Hernandez J.I.
  9. Rebolo R.,Herrero E.
  10. Rosich A.
  11. Lafarga M.
  12. Bignamini A.
  13. Sozzetti A.
  14. Claudi R.,Cosentino R.
  15. Molinari E.
  16. Maldonado J.
  17. Maggio A.
  18. Lanza A.F.
  19. Poretti E.,Pagano I.
  20. Desidera S.
  21. Gratton R.
  22. Piotto G.
  23. Bonomo A.S.,Martinez Fiorenzano A.F.
  24. Giacobbe P.
  25. Malavolta L.
  26. Nascimbeni V.,Rainer M.
  27. Scandariato G.
  28. Published by
    CDS
Abstract

The distribution of exoplanets around low-mass stars is still not well understood. Such stars, however, present an excellent opportunity for reaching down to the rocky and habitable planet domains. The number of current detections used for statistical purposes remains relatively modest and different surveys, using both photometry and precise radial velocities, are searching for planets around M dwarfs. Our HARPS-N red dwarf exoplanet survey is aimed at the detection of new planets around a sample of 78 selected stars, together with the subsequent characterization of their activity properties. Here we investigate the survey performance and strategy. From 2700 observed spectra, we compare the radial velocity determinations of the HARPS-N DRS pipeline and the HARPS-TERRA code, calculate the mean activity jitter level, evaluate the planet detection expectations, and address the general question of how to define the strategy of spectroscopic surveys in order to be most efficient in the detection of planets. We find that the HARPS-TERRA radial velocities show less scatter and we calculate a mean activity jitter of 2.3m/s for our sample. For a general radial velocity survey with limited observing time, the number of observations per star is key for the detection efficiency. In the case of an early M-type target sample, we conclude that approximately 50 observations per star with exposure times of 900s and precisions of approximately 1m/s maximizes the number of planet detections.

Keywords
  1. surveys
  2. spectroscopy
  3. m-stars
  4. radial-velocity
Bibliographic source Bibcode
2017A&A...598A..26P
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/598/A26
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/598/A26
Document Object Identifer DOI
doi:10.26093/cds/vizier.35980026

Access

Web browser access HTML
http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/598/A26
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/598/A26
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/598/A26
IVOA Table Access TAP
http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/0?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/598/A26/table2?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/598/A26/table2?

History

2017-06-16T14:34:33Z
Resource record created
2017-06-16T14:34:33Z
Created
2017-07-03T13:52:10Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr