Polarized images of MWC758 Virtual Observatory Resource

Authors
  1. Benisty M.
  2. Juhasz A.
  3. Boccaletti A.
  4. Avenhaus H.
  5. Milli J.
  6. Thalmann C.,Dominik C.
  7. Pinilla P.
  8. Buenzli E.
  9. Pohl A.
  10. Beuzit J.-L.
  11. Birnstiel T.,de Boer J.
  12. Bonnefoy M.
  13. Chauvin G.
  14. Christiaens V.
  15. Garufi A.
  16. Grady C.,Henning T.
  17. Huelamo N.
  18. Isella A.
  19. Langlois M.
  20. Menard F.
  21. Mouillet D.,Olofsson J.
  22. Pantin E.
  23. Pinte C.
  24. Pueyo L.
  25. Published by
    CDS
Abstract

The study of dynamical processes in protoplanetary disks is essential to understand planet formation. In this context, transition disks are prime targets because they are at an advanced stage of disk clearing and may harbor direct signatures of disk evolution. We aim to derive new constraints on the structure of the transition disk MWC758, to detect non-axisymmetric features and understand their origin. We obtained infrared polarized intensity observations of the protoplanetary disk MWC758 with SPHERE/VLT at 1.04 microns to resolve scattered light at a smaller inner working angle (0.093") and a higher angular resolution (0.027") than previously achieved. We observe polarized scattered light within 0.53" (148AU) down to the inner working angle (26AU) and detect distinct non-axisymmetric features but no fully depleted cavity. The two small-scale spiral features that were previously detected with HiCIAO are resolved more clearly, and new features are identified, including two that are located at previously inaccessible radii close to the star. We present a model based on the spiral density wave theory with two planetary companions in circular orbits. The best model requires a high disk aspect ratio (H/r~0.20 at the planet locations) to account for the large pitch angles which implies a very warm disk. Our observations reveal the complex morphology of the disk MWC758. To understand the origin of the detected features, the combination of high-resolution observations in the submillimeter with ALMA and detailed modeling is needed.

Keywords
  1. young-stellar-objects
  2. galaxy-classification-systems
  3. polarimetry
Bibliographic source Bibcode
2015A&A...578L...6B
See also HTML
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/578/L6
IVOA Identifier IVOID
ivo://CDS.VizieR/J/A+A/578/L6
Document Object Identifer DOI
doi:10.26093/cds/vizier.35789006

Access

Web browser access HTML
https://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/A+A/578/L6
https://vizier.iucaa.in/viz-bin/VizieR-2?-source=J/A+A/578/L6
http://vizieridia.saao.ac.za/viz-bin/VizieR-2?-source=J/A+A/578/L6
IVOA Table Access TAP
https://tapvizier.cds.unistra.fr/TAPVizieR/tap
Run SQL-like queries with TAP-enabled clients (e.g., TOPCAT).
IVOA Cone Search SCS
For use with a cone search client (e.g., TOPCAT).
https://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/578/L6/list?
https://vizier.iucaa.in/viz-bin/conesearch/J/A+A/578/L6/list?
http://vizieridia.saao.ac.za/viz-bin/conesearch/J/A+A/578/L6/list?

History

2015-06-09T07:27:23Z
Resource record created
2015-06-09T07:27:23Z
Created
2015-10-05T18:09:21Z
Updated

Contact

Name
CDS support team
Postal Address
CDS, Observatoire de Strasbourg, 11 rue de l'Universite, F-67000 Strasbourg, France
E-Mail
cds-question@unistra.fr